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Introduction 

Elusive Optimality in the Box Problem 

N E L S O N M.  B L A C H M A N  
3 3  L i nda Avenue, Apt. 2208 

Oakland,  CA 946 1 1-48 19 
b l achman®gte.net 

D. M A R C  KI L G OU R  
Wilfr id  Laurier U n iversity 

Waterloo, ON N2L 3CS CANADA 
mk i lgour®wlu.ca 

Imagine that on a game show you are presented with two identical boxes : Bs, which 
contains an amount of money $S > 0, and B1, which contains $L = $2S. You pick 
one box-say Ex-which might be either Bs or B1• Now you must decide whether to 
keep Bx and the $X it contains, or to exchange it for By and $Y. You do not know the 
values of S or L ,  but before you make your decision you may peak inside Bx to learn 
the value of X. 

According to the following argument, what you should do is clear: 

Because X is equally likely to be S or L ,  you are equally likely to have 2X 
or X /2 after trading. Consequently, your expected gain from trading boxes is 
�(2X) + �(X/2) = �X > X. On average, therefore, trading results in a 25% 
improvement. 

In other words, you optimize your expected net gain by always trading. Moreover, the 
value of X does not affect the decision, so there is no need to look inside Bx. 

Most people find this conclusion paradoxical, as trading merely adds one ineffective 
step to the random selection of a box. Because X and Y take the same values with the 
same probabilities (they are "stochastically equal"), their averages must be identical . 
Another argument is that trading Bx for By is equally likely to result in a gain of 
L - S = S or a loss of the same amount; so the expected change in your wealth must 
be zero. Using a geometric mean, the "average" of doubling and halving would be the 
identity. But expected values seem appropriate here, and they are weighted a rithmetic 
means. 

This puzzle, which we call the Box Problem, dates back at least to 1953 [9]. It has 
also been named the "wallet game" [8], the "exchange paradox" [12, 15], the "two
envelope paradox" [5, 10], and the "Ali-Baba paradox" [1, 1 4]. 

An obvious criticism of the "always trade" argument is that the expected value 
calculation is the same no matter what the value of X. Intuitively, we feel some values 
of X are so large that X = L is much more likely than X = S. To address this criticism, 
it is natural to use a Bayesian analysis, in which new information (like the value of X) 
can change your probabilities, and therefore your decision. 

Bayesian analyses of the Box Problem did not appear until the past decade but now 
there are several [ 4, 6, 10, 11, 12]. These show that always trading is not optimal 
for every prior distribution of S, but-surprisingly-they have identified some prior 
distributions for which always trading is optimal, apparently. (Christensen and Utts [6] 
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claimed that this phenomenon could not occur when the underlying distribution is 
continuous, but corrected their error later [3] . )  

Thus, the 25% expected gain argument is only the beginning of the puzzle. Prior 
distributions exist for which always trading is optimal, so the Bayesian perspective 
provides no grounds for flatly rejecting the 25% argument. These "anomalous dis
tributions," and the "always trade" conclusion they support, thus constitute a deeper 
paradox-which this article aims to explore. 

A strategy for the Box Problem is a rule to determine whether to trade or not, given 
each possible amount that you could discover in Bx. We begin by introducing some 
strategies and discuss how to evaluate and compare them. Without using conditional 
probabilities, we determine optimal strategies whenever they exist, obtaining results 
that illuminate the anomalous cases while remaining consistent with Bayesian analy
sis of the "ordinary" cases. Then we exhibit the results of thirteen different strategies 
in a million-round simulation of the Box Problem under an anomalous distribution, 
showing how the benefits of theoretically superior strategies can be extremely elusive 
in practice. We conclude with some further comments about "solving" the Box Prob
lem. 

Strategies in the box problem 

A strategy is a rule telling you to trade boxes, or not, based on the value of X. To 
specify a strategy, we must know what values of X are possible; to evaluate the benefit 
of a strategy, we must have probability distributions for X and Y. To keep the anal
ysis simple without losing anything essential, we will suppose that the only possible 
amounts that could be found in the boxes are powers of 2. 

Assume that the distribution of S is given by a doubly-infinite sequence of non
negative numbers, . . .  , P-2 . P-I · po , PI .  P2 • . . .  , satisfying Lk Pk = 1 ,  where 

for each k E Z. (Hereinafter, summations run from -oo to oo unless otherwise spec
ified. )  Note that Pk might equal 0 for many values of k, perhaps when k < 0 because 
small fractions of a dollar are hard to put into boxes, or when k » 1 because very large 
amounts of money are not available. 

We can now determine the distributions and expected values of X, Y, L, and S in 
terms of {pk } .  First, the expected value of S is the summation of the product of every 
possible value of S times its probability, i .e . ,  

E[S] = L 2k Pk· ( 1 )  
k 

Of course, E[S] = oo is possible (i .e . ,  the summation in ( 1 )  may not converge), in 
which case we say that E[S] is not finite [7, p. 22 1 ] ,  or that S has "a heavy tail." 

Because L = 2S, it follows that Pr[L = 2k ] = Pk-I and E[L] = 2E[S] . To find the 
distribution of X, we note that X can equal 2k in two mutually exclusive ways :  either 
S = 2k-I and X = L,  or S = 2k and X = S. The first has probability �Pk-I. and the 
second �Pk· Hence, 

(2) 
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so the expected value of X equals 

E[X] = L2k-l[P k-l + Pk] = L2k-lPk-l + L2k-lPk 
k k k 
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Note that E[Y] = �E[S] ,  because X + Y = L + S = 3S .  (Alternatively, E[Y] could 
be calculated directly. ) Clearly E[L] and E[X] = E[Y] are all finite if and only ifE[S] 
is finite. 

A strategy for the Box Problem is a rule telling you to trade boxes, or not, as a 
function of the value of X. To be as general as possible, we allow a strategy to give 
you a probabilistic instruction ("Trade with probability q"). Thus, a strategy a is a 
doubly-infinite sequence 

where qk is the probability of trading boxes upon finding that X = 2k. (We' ll write 
qk (a) instead of qk when the name of the strategy is not clear from the context. )  

If  you use strategy a ,  we will say that the box you end up with is Bz<(Jl, containing 
the amount Z(a) .  For example, two very simple strategies are the always-trade strat
egy, O'atways• which has qk = 1 for all k and Z (a always) = Y, and the never-trade strategy, 
anever. which has qk = 0 for all k and Z(anever) = X. 

A general expression for the distribution of Z(a) will be useful. There are three 
ways for Z(a) to equal 2k: either X =  2k and you don't  trade, or X =  S = 2k-l and 
you do trade, or X = L = 2k+ l and you do trade. The probabilities of these three mu
tually exclusive events are, respectively, Pr[X = 2k](l- qk), �Pk-lqk- l• and �pkqk+ l· 
Thus, using (2), 

k k 1 1 
Pr[Z(a) = 2 ] = ( 1  - qk) Pr[X = 2 ] + 2 P k- lqk-t + 2 Pkqk+ l 

k 1 1 
= Pr[X = 2 ] + 2(qk-t - qk)Pk- l - 2(qk- qk+t)Pk (4) 

for each k E Z. Of course, S � Z(a) � L, so E[S] � E[Z(a)]  � E[L] = 2E[S] . It 
follows that E[Z(a ) ]  is finite if and only if E[S] is finite . In this case, (4) implies that 

E[Z(a) ]  = L2k Pr[Z(a) = 2k] 
k 

= E[X] + L2k-l[(qk- l- qk)Pk- l- (qk- qk+ l)Pkl· (5) 
k 

We now define G (a ) ,  the gain from strategy a ,  as G (a) = Z (a ) - X. The value of 
G (a )  is the amount by which a is better than doing nothing. It is easy to verify that 

k 1 
Pr[G(a) = 2 ] = 2 Pkqk k 1 1 

Pr[G (a ) = -2 -] = 2Pk-tqk 

for each k E Z, so that the expected value of G (a )  is 

E[G(a )] = L2k-lpkqk- L2k-2Pk- lqk. 
k k 

(6) 

(7) 



1 74 MATH EMATICS MAGAZ I N E  

If E[S] i s  finite, then E[G(a) ]  = E[Z(a)]  - E[X] and (5) and (7) are equivalent, as 
is easily shown. The benefit of (7) is that it may be meaningful even when E[S] is 
infinite, in which case E[Z(a) ]  and E[X] are infinite also. 

Now we turn to some more interesting strategies . The simplest useful strategy for 
the Box Problem is the threshold strategy of trading if and only if the observed value of 
X is below some fixed amount. Intuition suggests that threshold strategies are promis
ing because they specify trading when the amount in hand, X, is small, but not when 
it is large. For K E Z, we define aK as qk = 1 if k .::::; K and qk = 0 if k > K .  Substi
tution in ( 4) shows that 

( 8) 

Thus the net effect of aK is to transfer the probability �PK from 2 K to 2 K+ I. Without 
regard to whether E[S] is finite, we can use (7) to find the expected gain for aK relative 
to X, 

(9) 

Thus the threshold strategy aK is never worse than doing nothing, and is strictly better 
(according to the expectation-of-gain criterion) whenever PK > 0. 

A subset stra tegy is defined by a subset U � Z such that trading occurs if and only 
if log2 X E U, i .e . ,  if and only if the amount in Bx equals 2k for some k E U. The 
simplest subset strategies are point strategies, which call for trading if and only if 
X =  2 K for some specific value of K, i .e . ,  U = {K} .  Of course, threshold strategies 
are also subset strategies ; the subset coiTesponding to aK is U = {k E Z : k .::::; K } .  

Two more strategies in the subset class will be used a s  illustrations below. Define 
D'even by qk = 1 if k is even and qk = 0 if k is odd. Define D'octd by qk = 1 if k is odd and 
qk = 0 if k is even. These two strategies are "complementary" in the sense that their 
respective qks sum to 1 for every k, reflecting that the subsets defining D'even and D'octd 
are complements . 

As already noted, (5) can be solved for E[G(a)]  = E[Z(a)] -E[X] when E[S] < 
oo .  When 1 -qk is substituted for qk in every term of (5), the value of E[G(a) ]  
obtained in  this way changes sign. Thus, the expected gains from complementary 
strategies, if both finite, are equal and opposite in sign. Hence (assuming E[S] < oo )  
E[G (aeven) ]  + E[G (aoctct) ]  = 0 and E[G (anever) ]  + E[G(aalways)] = 0. 

A strategy not in the subset class was suggested independently by Ross [13] and 
Bruss [5] . Based on a probabilistic threshold, it includes trade probabilities qk that are 
neither zero nor one. The idea is to compare the observed amount, X, with the value of 
a random variable, T, and trade if and only if X .::::; T .  An equivalent way to specify this 
ra ndom-threshold strategy is via the trade probabilities qk = Pr[T =:::: 2k] .  Of course, 

limk-->oo qk = 0. Ross [13] showed that no matter what the distribution of S, a random 
threshold strategy a satisfies Pr[Z(a) = L] > Pr[Z(a) = S] provided {qk } is a strictly 
decreasing sequence, which can be arranged by choosing T suitably. 

To illustrate random threshold strategies, we will use offset geometric strategies, 
G(a, K) ,  where 0 < a < 1 and K E Z, K =:::: 0. To define G(a, K) ,  set qk = 1 for 
k < K, and qk = o/- K for k =:::: K .  (The trade probability, qk . is the complement of the 
cumulative distribution function of a geometric distribution with parameter a, "offset" 
K units to the right.) Note that either qk = 1 or qk < qk- I· 

We are now ready to compare strategies, and to classify distributions of S as "ordi
nary" or "anomalous ." 
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Im proving your strategy 

Our objective is to find "good" strategies for the Box Problem in the anomalous case 
when the apparently optimal strategy is "always trade." To specify this case, we must 
determine when optimal strategies exist, and identify them. 

We wish to find all strategies a * = { ... , q�1, q;, qr, . . .  } that maximize E[G(a) ] .  
Assume that the underlying distribution { ... , p_1, p0, p1, . . .  } i s  such that E[S] < oo, 
so that E[G (a) ]  = E[Z(a) ] -E[X] . In this case, the summations in (7) (or (5)) can 
be regrouped to produce 

E[G(a) ]  = L2k-1pkqk- L2k-2Pk-1qk = L2k-2qk[2pk- Pk-d· ( 1 0) 
k k k 

Since the probability qk must lie between 0 and 1 ,  it is clear from ( 1 0) that E[G(a)]  is 
maximized by any strategy satisfying 

{ 1 if Pk > !Pk-1 
* b" "f 1 qk = ar 1trary 1 Pk = 2.Pk-1 

0 if Pk < !Pk-1· 
( 1 1 )  

Equation ( 1 1 )  i s  equivalent to the Excha nge Condition for Discrete Distributions 
(named by Brams and Kilgour [4] , but also discovered, at least in special cases, by 
several others) :  When you find $2 k in Bx, you may trade boxes if and only if 

Pk-1 Pk?:. -2-, 

and you must trade boxes if the inequality in ( 1 2) is strict. 

( 1 2) 

An optimal strategy a *  satisfying ( 1 1 )  is a Bayesian optimum in that it is "local," 
taking into account all the information you have (i.e. the realized value of k) at the 
time you make your decision. This is a consequence of the term-by-term maximiza
tion of ( 1 0) .  For the same reason "global" effects, such as convergence or divergence 
of expectations, are irrelevant to the characterization of a *  in ( 1 1 ) . Thus, ( 1 1 )  seems 
to make sense even when it shouldn' t-when the underlying distribution fails the con
dition E[S] < oo, so that the argument leading to ( 1 1 )  cannot be justified. 

In summary, Exchange Condition ( 1 1 )  gives all optimal strategies, a * ,  for any Box 
Problem {pk } for which E[S] < oo, i .e . ,  for which the summation in ( 1 )  is convergent. 
But should this condition fail, we have no reason to believe that a strategy satisfy
ing ( 1 1 )  is better than any other. The series in (5) and (7) are at best conditionally 
convergent in this case so, as discussed in detail by Norton [12] , the manipulation 
of (7) to obtain ( 1 0) is unjustified. 

Yet ( 1 1 )  seems to leave a loophole for the dubious "always trade" strategy ! Define 
{pk } to be an a noma lous distribution if it satisfies Pk ?:. ! Pk-1 for all k E Z. By ( 1 1 ), 
no strategy can be better than "always trade" (q; = 1 for all k) if the distribution is 
anomalous. And the really bad news is that there are plenty of anomalous distributions 
(see below). 

Have we come all this way to return to the conclusion implied by the seemingly 
paradoxical 25% expected gain calculation? No. The reason is that no anomalous dis
tribution could possibly satisfy the condition E[S] < oo. To see this , note first that 
each anomalous distribution is characterized by a value of H,  with -oo .::::; H < oo, 
such that Pk = 0 for k < H and Pk > 0 for k ?:. H. (Let H = inf{k : Pk > 0} ,  which 
must exist since Pk must be positive for at least one value of k. It is then immediate 
that Pk > 0 for any k > H.)  Now select any K > -oo such that K ?:. H.  Because 
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Pk � �Pk-1 for k =  K + 1 ,  K + 2, . . . , K + h, it follows that PK+h � 2-h PK· Then 
substitution in ( 1 )  yields 

00 00 

E[S] � L2K+hPK+h � L2K PK = 00, 
h=O h=O 

because PK > 0. Therefore, we should not be surprised if ( 1 1 )  leads to nonsensical 
conclusions for anomalous distributions, because all such distributions fail a condition 
that is crucial to the derivation of ( 1 1 ) .  

We tum to the problem of  comparing strategies when {pd i s  anomalous. We now 
know that E[Z(a)]  = oo for every strategy a, because E[S] = oo. Our comparisons 
will rely on expectation of gain and on stochastic dominance. 

A random variable W1 stocha stica lly domina tes a random variable W2 if and only if 

(a) for every w, Pr[W1 � w] � Pr[W2 � w] , and 
(b) for some Wo, Pr[W1 � wo] < Pr[W2 � wo] . 

We say that strategy a1 stocha stica lly domina tes strategy a2 if and only if Z(at ) 
stochastically dominates Z(a2); if so, there is a strong argument that you are better 
off choosing a1 instead of a2• If equality holds in (a) for all w, W1 and W2 are stocha s
tica lly equa l; strategies a1 and a2 are stochastically equal if Z(a1 ) is stochastically 

equal to Z(a2). 
For example, the best-case outcome L stochastically dominates X, and X stochas

tically dominates the worst-case outcome S. (To verify part (a) of the definition, note 
that, for any integer K, Pr[S � 2K] = Lf=-oo Pk> Pr[X � 2K] = Lf:�oo Pk + �PK· 
and Pr[L � 2K] = Lf:�oo Pk· To verify part (b), note that these three quantities are 
different for any K E Z satisfying PK > 0, and that such a K must exist.) Simi
larly, the strategies O'never and O'always are stochastically equal because X = Z(anever) 
andY = Z(aaiways) are stochastically equal . 

Recall that G(a) = Z(a)- X, where X =  Z(anever). It follows from ( 8) that the 
threshold strategy aK stochastically dominates CTnever if and only if PK > 0, since aK 
transfers probability �PK from 2K to 2K+I. (If PK = 0, the two are stochastically 
equal . )  Thus, stochastic dominance tells us that any threshold strategy is better than 
nothing, provided the exact threshold occurs with positive probability. 

Unfortunately, comparison of threshold strategies using stochastic dominance is not 
very useful. Suppose that K and M are integers such that K > M. From (4) and (2), 
it follows that Pr[Z(aK) = 2k] = Pr[X = 2k] = HPk- l + Pk] for all k, except that 
Pr[Z(aK) = 2K] = �PK-1 and Pr[Z(aK) = 2K+I] = H2PK + PK+tl; similarly for 
Pr[ Z (aM)]. Therefore 

( 1 3) 

It follows that aK and aM are stochastically equal if PK = PM = 0, aK stochastically 
dominates aM if PM = 0 and PK > 0, and aM stochastically dominates aK if PM > 0 
and PK = 0. If PK > 0 and PM > 0, there are no stochastic dominance relations be
tween aK and aM. Thus stochastic dominance tells us that a threshold strategy aM is a 
poor choice if p M = 0; any threshold strategy aK, where p K > 0, would be better. But 
this result does not help in the context of distributions for which Pk > 0 for all large 
enough k. Thus, for anomalous distributions, no threshold strategy (with sufficiently 
large threshold) stochastically dominates any other. 
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Stochastic dominance can be used to compare random threshold strategies. Sup
pose qk ( cr). � qk ( cr') for all k E Z, with strict inequality for at least one value of k 
where Pk > 0. Then it follows that cr stochastically dominates cr' . Among offset geo
metric strategies, for example, it is easy to show that, for each a and for K E Z large 
enough, G (a , K) is stochastically dominated by G (a , K + 1 ) ,  which is stochastically 
dominated by G(a , K + 2) , etc . 

For anomalous distributions, however, stochastic dominance has not helped very 
much. Threshold strategies with large thresholds are incomparable. Random threshold 
strategies can always be improved by shifting to the right. So we try another method 
of comparison, based on expectation. 

Expectation is a natural way to evaluate policies in any probabilistic situation. If 
you intend to play the box game n » 1 times using strategy cr and if the Law of Large 
Numbers (the "law of averages") applies, then the total you will receive is likely to be 
relatively close to n x E[Z(cr) ] ,  which justifies the choice of a strategy cr that maxi
mizes E[Z(cr)] .  Expectations also have the advantage of assigning numerical values, 
so every strategy is evaluated on the same scale. 

But the disadvantage of expectation when E[S] = oo is, as already noted, that 
E[Z(cr)] = oo for every strategy cr, so there are no grounds for comparison of strate
gies . For example, L always stochastically dominates X and Y, which always dominate 
S, even though when E[S] = oo all of L, X, Y, and S have the "same" expected value. 

We can, however, use expectation of gain for comparison. Recall that G (cr) = 

Z(cr) - X, and that (7) may make it possible to calculate E[G (cr) ] even when 
E[S] = oo. It is reasonable to prefer cr1 to cr2 when G (cr1 ) - G(cr2) tends to be 
positive. Moreover, E[G (cr1 ) - G(cr2) ]  = E[G(cr1 ) ] -E[G (cr2) ] ,  so if (7) can be used 
to show that E[G(cr1 ) ]  > E[G (cr2) ] ,  then we are justified in preferring cr1 to cr2 . 

We use the expectation-of-gain criterion to try to sort out the threshold strategies. 
Assume that M and K are integers and that M < K. Using (9), it is easy to show that 

( 14) 

An alternative derivation can be based on the calculations leading to ( 1 3) .  
There are distributions {pk } with E[S] = oo for which ( 14) identifies a unique 

threshold strategy that is preferred to all others on the basis of the expectation-of-gain 
criterion. (One such distribution is given by Pk = 0 for k < 0, p1 = � . and Pk = 2-k- t  
for k 2: 2. The threshold strategy recommended by  ( 14) i s  cr1 . )  But for anomalous dis
tributions, we are no further ahead because, as is easy to verify, PK2K 2: PM2M is 
true for every K and M such that K > M, where K 2: H and K > -oo. (Recall that 
H = inf{k : Pk > 0} 2: -oo.) 

The optimal selection of a threshold strategy for an anomalous distribution is there
fore a real conundrum. Equation ( 14) demonstrates that on the expectation-of-gain 
criterion, a higher threshold is always better than a lower one. In other words, crK 
gets better and better as K increases . But note that crK � CTnever as K � -oo, and that 
crK � CTaJways as K � oo. The implication is that even a low threshold is better than 
never trading, higher thresholds are better than lower ones, and the best possible strat
egy is to increase the threshold to the extreme, approaching in the limit the strategy 
of always trading-which on this argument must be "optimal ." But these conclusions 
are impossible to reconcile with what we already know, that CTaJways is no better and 
no worse than CTnever· We seem to have an infinite sequence of uphill steps that, as in 
an M. C. Escher drawing, returns us to the same level . To understand the situation 
better, and to show that promising strategies can have elusive benefits, we will use 
simulations . 
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Some simulation results 

We now illustrate some of the strange things that can occur in the Box Problem when 
the underlying distribution is anomalous, i .e . ,  when ( 1 2) holds for all k E Z. Brams and 
Kilgour [ 4] provide a useful collection of such distributions, including the geometric 
distribution with ratio r = �: { 0 for k < 0 Pk = � (�) k for k � 0 ( 1 5) 

The random variable S with this distribution belongs to the family introduced by Nor
ton [12]; it was also considered by Linzer [10] inter a lios. In fact, any geometric dis
tribution with r > � would serve our purposes . 

The distribution ( 1 5) is anomalous because Pk > �Pk-l for k = 1 ,  2, .. . , so 
E[S] = oo. Still , what should you do if you believe that S is distributed according 
to this distribution when the host asks you whether you want to trade? You know 
that ( 1 1 )  appears to suggest always trading, but you also know that ( 1 1 )  is not applica
ble. 

Let K E Z satisfy 0 � K < oo, and consider the threshold strategy aK. From (9), 
it follows that 

1 22K- 1 
E[G(aK)] = E[Z(aK)- X]= 2PK2K = 3K+ l . ( 1 6) 

Note that the right side of ( 1 6) is an increasing function of K-it is of the same order 
as (�)K. In other words, it makes the "promise" we have seen before: choose a higher 
and higher threshold and you will do better and better. 

We now use simulation to show how difficult it is to pin down this gain in practice. 
Table I summarizes the outcomes of 1 ,000,000 replications of the Box Problem with 
S distributed according to ( 1 5). Each entry in the body of the table is the average 
gain over 100,000 replications using the indicated strategy. The final entry of each 
row is the average of the preceding entries, and is thus the average over all 1 ,000,000 
replications. The use of Ma thema tica [2] to obtain the numbers in Table I required 
about ten minutes of computing time on a 200-MHz PC. 

TABLE 1: Average o utcomes for var ious  strategies i n  the Box Prob lem when S is d i s
tr ibuted as i n  ( 1 5). Each entry is the average outcome for the i n d icated strategy over 
1 00,000 rep l i cations .  The last co l u m n  i s  the average over a l l  1 ,000,000 rep l i cat ions .  

auever (X) 
aalways (Y) 
a4 
a9 
ai4 
a19 
a24 
a29 
a34 
a odd 
a even 
G( � ,O) 

G( � , 25) 

$345 ,829 $5 , 1 67 $26,252 $ 1 5 ,290 $9,734 $8,634 $14, 1 76 $24,879 $359, 159 $9,3 10  $8 1 ,843 
173 ,62 1 7,556 46,602 1 8 ,656 6,704 14 ,070 25,286 14, 1 07 700,763 9,360 1 0 1 ,672 
345 ,829 5 , 1 67 26,252 1 5 ,290 9,735 8,634 14, 177 24,879 359, 159 9,3 1 1  8 1 ,843 
345,83 1 5 , 1 69 26,254 1 5 ,292 9,736 8,636 14, 1 78 24,8 8 1  359, 1 6 1  9,3 1 2  8 1 ,845 
345 ,837 5 , 1 75 26,259 1 5 ,298 9,745 8 ,644 14, 1 84 24,890 359, 168  9,321 8 1 ,852 
345 ,870 5 , 1 96 26,307 15 ,347 9,787 8 ,670 14,208 24,929 359,205 9,386 8 1 ,890 
345,923 5 ,375 26,637 1 5 ,468 9,724 8,534 14,549 24,845 359,347 9 , 1 92 8 1 ,959 
345,4 1 9  7,556 25 , 1 27 1 8 ,656 6,704 14,070 14,549 24,845 362,534 9,360 82,882 
345 ,4 1 9  7,556 46,602 1 8 ,656 6,704 1 4,070 25,286 14, 1 07 357, 1 66 9,360 84,493 
173 ,649 5 , 1 99 47,435 1 6,633 8,650 10 ,007 14,093 14,200 702,7 1 5  9,4 10  1 00, 1 99 
345 ,800 7 ,524 25,4 1 9  17 ,3 1 2  7,788 1 2,697 25,369 24,786 357,207 9,260 83,3 1 6  

345,825 5 , 1 44 26,254 1 5 ,292 9,645 8,634 14, 1 79 24,868 359, 1 84 9,298 8 1 ,832 

173 ,62 1 7,556 46,602 1 8 ,320 8 ,7 1 8  1 1 ,386 14,549 14,443 700,763 1 0,03 1 1 00,599 

Minimum (S) 173, 1 50 4,24 1 24,285 1 1 , 3 1 5  5 ,479 7,568 1 3 , 154 1 2,995 353 ,307 6,223 6 1 , 172 

Maximum (L) 346,300 8,482 48,569 22,630 1 0,959 1 5 , 1 36 26,308 25,99 1 706,6 15  12 ,447 1 22,344 



VOL.  74, NO . 3 ,  J U N E  2 00 1  1 79 

The first row of Table I represents strategy anever and the second aalways· Because 
Z(anever) = X  and Z(aatways) = Y, these rows record the average contents of Bx and 
By. respectively. Similarly, the last two rows of Table I give S, the smaller of the 
amounts in the two boxes, and L ,  the larger of the two amounts .  

Table I has several remarkable features .  First, stochastic dominance and stochas
tic equality don't  seem to mean much. The average gains for two stochastically equal 
strategies, anever and aatways• are far from equal. Stochastically dominant strategies do 
not necessarily average better than the strategies they dominate (all of the threshold 
strategies average more than anever• but less than aalways). Some comparisons are as 
expected: the offset geometric strategy G(�. 25) averages better than G(�. 0) , and L 
averages better than X andY, which average better than S-but this is hardly surpris
ing, as it is always true that L = max(X, Y) > min(X, Y) = S. 

The key feature of Table I is the importance of a few very large values, which 
simply dominate everything else. Almost all of the variability in the first column, for 
example, can be explained only by occurrence of one large value, S = 234, in box By. 
This single event swamps everything else in the column; strategies that did not trade 
the huge value of X = L averaged about $345,000, whereas those that traded it away 
averaged about $173,000. 

The single largest value in the simulation appeared in the ninth column, where S = 
235 occurred in box Bx. In this column, the average for a strategy depends almost 
entirely on whether this huge value of X was traded for the even more enormous Y. 
In this case, strategies that traded averaged about $700,000, and strategies that did not 
averaged about $360,000. 

What's more, nothing affects the overall averages (final column) like the single 
enormous value of S in the ninth column. The three strategies that traded this particular 
X for Y average a little more than $100,000 over the 1,000,000 replications; all of the 
others, a little more than $80,000. Thus, most of the variability in the final column of 
the table tells us only about success or failure in this one (in a million) event. 

Still , despite the masking effect of rare extreme values of S, Table I contains some 
evidence that strategies we have identified as preferable tend to do a little better. For 
example, note the steady increase in the final column from a4 to a9 to . . .  to a34. Of 
course, all of these strategies failed to trade for the very large Y in the ninth column, 
and would have done much better had they done so. What's more, the next strategy 
in the sequence, a39, would have produced the same result as aatways• for the simple 
reason that never in the simulation did any value of X or Y exceed 236. 

Table I also shows simulation results for four more strategies, two of the offset 
geometric random threshold type, G(�, 0) and G(�, 2 5) ,  plus the strategies aodd (trade 
only when X is an odd power of 2) and a even (trade only when it is an even power) . As 
usual, strategies that traded for the huge value of Y appearing somewhere in the ninth 
group of 100,000 replications did much better. Close examination shows, for example, 
that even though the second random threshold strategy stochastically dominates the 
first, the empirical evidence is not overwhelming. The dominant strategy does better 
in seven of the ten groups, but its higher overall average can be entirely attributed to 
its decision on the extreme event in the ninth group . 

Finally, Table I makes clear that patience is essential to enjoy the benefits of better 
strategies . In each column, the benefit of a9 over a4 is very stable, at $1 or $2, con
sistent with the theoretical average improvement of $1.693 from (14) . On the other 
hand, the average gain from a34 exceeded the average gain from a29 over 1,000,000 
replications, but the two averages were equal in five of the groups of 100,000; a29 was 
better in three of the remaining five groups, and a34 was better in only two. But the 
clearest indication of the almost chaotic results of the simulation may be that, even 
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with 1,000,000 replications, the best average was achieved by O"aJways• a strategy that 
could hardly be less sophisticated. 

Conclusion 

The Box Problem is more general than it may seem. It does not depend, for example, 
on the ratio L/ S = 2; whenever 0 < L/ S =I= 1, the same paradoxes arise. If you do not 
look inside Bx, or have no way to utilize this information, then trading increases your 
expected value by the factor 

1 (L S ) (L - S)2 

2 s + L = 1 + 2LS ' 
(17) 

which always exceeds 1, so you will always be tempted to trade boxes. Even if L > 0 
and S > 0 are random quantities (whether or not they are independent of each other), 
then L/ S will have no fixed ratio, but the expected value of X/Y will exceed 1 because 
of (17) ,  and again you will be tempted to trade. And we have already shown that 
"always trade" is a useless strategy. 

A possible escape from the Box Problem is to measure values by using utility rather 
than dollars. Utility is a numerical measure of worth that can capture relevant aspects 
of the problem, such as the declining worth of an additional dollar as your wealth 
increases. But, as Brams and Kilgour [ 4] argue, the temptation to trade still arises if one 
box contains twice the utility of the other. If expected utility is finite (corresponding 
to a light-tailed distribution of S), then an optimal strategy can be found by modifying 
the derivation of (11) . Let uk = u(2k) denote your utility for $2k . Then substituting uk 
for 2k as in ( 5) produces 

To maximize the utility of the outcome, you may trade X = 2 k if and only if 
( uk+I - uk)Pk :::: ( uk - uk-dPk-I· and you must trade X = 2k if the inequality is 

strict. This is the analogue for utilities of the Exchange Condition, (12) . 
But what if the distribution has a heavy tail? One idea is to find a "nearby" problem 

with a light tail. Returning for simplicity to the problem without utilities, begin by 
deciding how many rounds, say n, that you intend to play. During n rounds, you can 
expect that S will fall only once inside the top 1�0% of its probability distribution, i .e . ,  
the part beyond S = 2K(n), where K (n) is the smallest integer for which L�n) Pk ::=: 
1 I n. Hence, your total outcome from the n rounds will hardly be affected by the shape 
of the tail of the distribution of S beyond $2K(n). In particular, it is unlikely to matter 
much whether the tail is finite, infinite but light, or-the actual case-infinite and 
heavy. Create a light-tailed distribution by re-assigning the probability beyond S = 2K(n), and calculate an optimal strategy using (11) . 

While the light-tailed distribution you construct is likely to be close to the original 
heavy-tailed distribution, it must be noted that the events removed are exactly those 
unlikely extremes that swamp the optimality calculation. Of course, we recommend 
the use of utility whenever your value for very great gains is less than proportionate. 

Another approach is to count time as a cost in your utility function. Selecting a 
strategy with a higher anticipated outcome might be less appealing if you must wait 
for a long time to obtain the benefit. Counting time as a cost may avoid many problems 
associated with heavy-tailed distributions . 
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The Box Problem captures a fundamental difficulty with the concept of optimality. 
It is sometimes impossible to provide reasonable advice to a decision-maker. Indeed, 
we have identified a situation when "optimality" seems not to exist, and when the strat
egy recommended by a straightforward "local" (Bayesian) analysis is simply useless. 
A decision-maker who relies on certain promising strategies is almost sure to find their 
benefits elusive. We have shown that this elusiveness arises from the "heavy tail" of a 
distribution, where events seem so remote that they can be of no practical significance. 
But given such a distribution, the elusiveness problem seems to us unavoidable. 

Note a dded in proof: We have shown that good strategies are elusive when L = 2S 
and S has an anomalous distribution. Both conditions seem essential : when X and Y 
are statistically independent and identically distributed (iid) in accordance with (15) ,  
a carefully-chosen threshold strategy achieves an average outcome Z very close to the 
average of max(X, Y) , provided the number of rounds is large. A future paper will 
provide details, and further elucidate good switching strategies. 
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The Anxious Gambler's Ruin 

J O S E P H  B A K  
City Col l ege of New York 

N ew York, NY 1003 1 

Suppose a person with A dollars decides to risk it in the hope of increasing it to B 
dollars . This could represent the final attempt of a gambler who has lost almost all of 
his money in Las Vegas, and now seeks to win just enough for transportation home. 
He finds a game where the probability of winning is p and where a bet of A dollars 
potentially pays A dollars ; of course, if he loses, he loses that money. 

In his last-ditch effort, he continues to stake the largest possible amount toward 
reaching, but not exceeding his goal. Thus, if he currently has A dollars and A s B /2, 
he risks all of it; if he is more than half-way to his goal, he bets the difference, B - A,  
since winning that amount will bring his purse exactly to B .  He stops gambling only 
when he has either lost all of his money or reached his goal of B .  

Our gambler might be described as desperate, but the adjective a nxious seems more 
appropriate. Aside from the connotation of nervousness about the outcome, it also 
suggests the desire to come to a conclusion as soon as possible. This paper deals with 
both of these aspects of the game: the gambler's chance of reaching his goal (which 
we will call success) , and the expected number of games until he has either achieved 
success or lost all of his money (which we will call fa ilure) . Obviously, this analysis 
also applies to perfectly calm a person willing to risk a fixed amount of disposable 
income for a chance at a specific sum of money, but we continue with the image of the 
anxious gambler. 

This is a variation of the classic problem known as "the gambler's ruin." In that 
case, a gambler with A dollars continually bets $1 against an opponent with B - A 
dollars until one of them is "ruined" .  If the gambler with an original amount of A 
has probability p of winning each game, then his probability of not being ruined (his 
chance of achieving B dollars before falling to 0) is given by: 

P(A , B , p) � { 
See, for instance, Feller [7] . 

(q jp )A - 1 

(q jp ) B - 1 

A/B 

if  p =I= �. q = 1 - p 

.
f I 1 p = 2:-

(1) 

Obviously, our anxious gambler problem can be similarly cast as a contest between 
two individuals , one with an initial fortune of A, the other with an initial fortune of 
B - A, culminating when one of them is ruined. The only difference, of course, is that 
the anxious gambler bets a varying amount on each game, in his eagerness to meet, 
but not exceed, his goal. 

To distinguish between the different but related variables under discussion, p and 
q will always denote the gambler's  probability of winning and losing, respectively, 
on each bet. The script letters P(A ,  B ,  p) and 'D(A , B ,  p) represent the probability 
of success and the expected number of games (or duration) in the classic case, with 
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uniform bets of $1 each. Roman letters P (A, B, p) and D(A, B, p) denote the corre
sponding probability and duration for the anxious gambler. 

First, we present an extremely simple proof that P (A, B, 1/2) = AjB. We then 
generalize the result and show how the key idea of the proof was used by de Moivre to 
obtain formula (1) for P(A , B, p) , even when p =1= 1/2. Another section deals with the 
transition from the classic gambler' s  ruin to the anxious gambler' s  ruin by considering 
the effects of increasing the stakes in the classic case to a fixed amount of $2 (or more) 
per bet. 

We then address general values of p, and find explicit formulae for P (A, B, p) and 
D(A, B, p) . We also cite a theorem of Dubins and Savage on an extremal property 
of P (A, B, p) , deriving a corresponding result for D(A, B, p) . The last two sections 
offer some ramifications of these ideas, relating them to certain aspects of sporting 
events and lotteries, and examining a more theoretical possibility : playing against an 
infinitely rich adversary. 

From P(A, 8, �) to P(A, 8, p) and 'D(A, 8, p) 
Recall that P (A, B, 1/2) is the probability that the anxious gambler eventually reaches 
the goal of B, given that he starts with A and uses the anxious strategy in a game with 
even odds of winning. 

PROPOSITION 1. F ora llpositive integersA,B such tha tA < B, P (A,B, 1/2) = 
A/B. 

P roof Let X0 = A, and let X; represent the gambler's  winnings on bet i, i ::: 1, 
so that S, = X0 + X1 + X2 + · · · + X, represents his holdings after n bets . A simple 
induction argument shows that each X; has one positive value and one matching nega
tive value with equal probabilities .  Thus, E[Xi l = 0, i ::: 1, and for all positive integers 
n, 

E[S,] = X0 = A. 

The probability that the game will continue indefinitely is 0 since the probability that 
the game will continue beyond n games is at most 1 /2". Hence, with probability 1, S, 
converges to a limit function S, which, according to the gambler' s  strategy, has only 
two possible values :  B (with probability P (A, B, 1 /2) ) ,  or 0, with the complementary 
probability. Thus, on the one hand, 

E[S] = limE[S11] = A 

while, on the other hand, 

E[S] = B P (A, B, �) 
from the definition of expected value. A comparison of the two expressions for E[S] 
shows that P (A, B, 1/2) = A/ B. (A formal proof that E[S] = limE[S11] can be 
given using the Bounded Convergence Theorem, which can be found in Billingsley [1 ,  
p .338] . )  • 

The proof of Proposition 1 can be applied with minor modification to obtain the 
same result in the classic problem when p = 1/2. In fact, the proposition can be ex
tended to a variety of cases, including fixed bets of any size, or any other type of "fair" 
bet, such as the type obtained when "true odds" are offered (e.g . ,  a 35 :1  payoff in a 
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game with a 1/36 chance of winning) .  The only requirements for the type of play are 
that: 

C l .  there are two fixed positive numbers m and q0 such that, in each game, the prob
ability of losing at least m is at least q0 , or 

C1' . there are two fixed positive numbers m and Po such that, in each game, the prob
ability of winning at least m is at least Po (either condition will guarantee that the 
probability of continuing indefinitely is zero), 

C2. the only possible end results are 0 or B ,  
C3 .  each game is fair, i .e .  E[ X;] = 0 for all i ::: 1. 

Thus we have 

PROPOSITION 2 .  (PROPOSITION 1 GENERALIZED) The proba bility tha t a ga m
bler with initia l va lue A will succeed in a chieving his goa l  of B is A/ B, whenever the 
individua l  bets a nd the overall strategy sa tisfy conditions Cl-C3. 

According to condition C3, the sequence of random variables {S,z} = { X0 + X1 + X2 + · · · + X11} is a ma rtinga le. (See Doob's  article [ 3] , Wha t is a ma rtinga le? for 
a good introduction.)  Thus Proposition 1 can be viewed as an example of martingale 
theory. It is interesting to note, however, how the defining property, condition C3, was 
used by de Moivre to solve the classic gambler's  ruin problem almost 200 years before 
the development of martingale theory. 

Solutions to the classic gambler's  ruin problem date back as far as 1654. Although 
no proof of the general case was published until 1711, Edwards shows how the ideas 
expressed in a series of letters between Pascal and Fermat indicated their knowledge 
of the general result. Edwards even offers a likely reconstruction of their proofs, based 
on their approaches to similar problems, and on hints derived from their correspon
dence [5, 1982] [6, 1983] . 

None of the earliest proofs indicated the simplicity of the proof for p = 1/2. In the 
first published proof, however, de Moivre [2, 1711] actually used the method of the 
generalized proposition to solve the classic problem in a ll ca ses, i.e., even if p =F 1/2. 
His ingenious approach consisted of changing the values of the coins used for betting, 
assigning them values in such a way as to guarantee that condition C3 is satisfied. To 
that end, he imagined that the player with A coins has them all in a pile, but rather 
than all having the same unit value, the bottom coin is given the value q j p, the one 
above that is given the value (q j p )2 , etc . with the top coin having a value of (q j p )A. 
His opponent' s  B - A coins are likewise piled up and given the values (qjp)A+1 for 
the top coin, (qjp)A+2 for the one underneath, down to (qjp)8 for his bottom coin. 
Moreover, the transfer of a coin after any game is always done by placing the loser's top 
coin on top of the winner's pile. Thus, E(X;), the expected value for the first player in 
any game i, is given by a combination of terms of the form p(q j p )<Hll - q (q j p )j, all 
of which equal 0. Replacing A by the new initial fortune of the first player, replacing 
B by the sum of the two players ' initial fortunes, and arguing as in the proposition, 
de Moivre obtained 

P(A,B, p) = [ m + (�)' + + (�rJ/[ m + (�)' + · + (�rJ 
which matches formula (1) for all values of p. 

Later, de Moivre attacked the problem of finding the duration in the classic prob
lem. Reassigning the value 1 to each coin, he noted that the expected gain for the 
gambler in each game is p - q .  The overall expected gain is [ P (A, B,  p)] ( B - A) -
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[1 - P(A ,  B ,  p)] A.  Thus, using the fact that the product of the expected number 
of games with the expected gain per game should equal the overall expected gain, 
de Moivre concluded that the expected number of games is given by 

V (A ,  B, p) = [A - B P(A , B, p) ] j(q - p) if p =I= 1/2 . (2) 

See Thatcher's  account [12] from 1957. De Moivre's  argument cannot be applied if 
p = 1/2. In that case, the result can be obtained by solving a difference equation and 

>y Feller [7, p. 349] as 

V (A ,  B, �) = A(B - A) .  (3) 

Bolder play: increasing the stakes in the classic gambler's ruin 

The relation between the gambler's approach in the classic problem and the approach 
of our anxious gambler can be seen as follows .  Suppose the classic gambler were to 
raise the stakes to $2 a game, or to any larger amount S. (Technically, of course, this 
is only possible if both A and B are divisible by S .  If that is not the case, one could 
use a mixed strategy, switching back to $1 per game when the fortune falls below S or 
above B - S. In our discussion, however, we will simply assume that S is a common 
divisor of A and B . )  If p = 1/2, according to our general proposition, the increased 
stakes would have no effect on the gambler' s probability of success. On the other hand, 
if p < 1/2, the probability of success increases. 

Feller [7, p.346] notes that increasing the stakes to S is equivalent to changing A 
and B into A/ S and B IS, respectively, and he proves that this leads to an increased 
probability of success if S = 2. In a recent note, Isaac [8, p. 406] gives a very neat 
proof of the general result, showing that the corresponding probability of failure is a 
decreasing function of S, for all positive S. Thus, 

1 
P(A/S,  BjS,  p) > P(A , B ,  p) for p < "2 '  S > 1. (4) 

Since the gambler's  probability of winning is the same as his opponent's  probability 
of losing, and since his opponent is playing the same game with A replaced by B - A 
and p replaced by q ,  it follows that P (A , B ,  p) = 1 - P ( (B - A) , B ,  q ) .  Along with 
inequality (4) , this yields 

P(A/S,  BjS,  p) < P(A,  B, p) 
1 

for p > -
2 ' s > 1. (5) 

Dubins and Savage offer no formal proof of the above inequalities, but they note [ 4, 
p. 83] that, for p < 1/2, the strong law of large numbers would "stimulate an interest 
in large bets" .  Indeed, as the reference to the strong law of large numbers implies, 
inequalities (4) and (5) go hand in hand with a decrease in the duration of play. The 
proposition below amplifies this idea. 

PROPOSITION 3 .  F or a ll va lues of p between 0 a nd 1, a nd a ll S � 2 (which divide 
A a nd B), V (AjS, BjS,  p) < V (A , B ,  p) jS. 

P roof According to de Moivre's  formula (2) : 

V (A , B , p) S [A - B P (A , B , p) ] 
------=--- = 
V (A/S,  BjS,  p) A - B P (A/S,  BjS,  p)

. 
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If p < 1 /2, both P (A , B ,  p) and P (A/ S ,  BjS ,  p) are less than A/ B ,  so that both 
expressions on the right side of the equation above are positive. It follows that the 
inequality in our proposition is equivalent to inequality (4) . Similarly, if p > 1 /2, 
the proposition is equivalent to inequality (5) .  Finally, if p = 1 /2, we can apply for
mula (3) to obtain a more explicit result: (A B 1 ) ( 1 ) 2 D s '  s '  2 = D A ,  B ,  2 jS . • 

According to Proposition 3 ,  D (2, 6 ,  p) � 2D ( 1 , 3 ,  p) for all p, and (as noted above) 
'D(2, 6, 1 /2) = 4'D( l ,  3 ,  1 /2) . Some examples of these values and the corresponding 
values of P are given in FIGURE 1 for p between . 1  and .9 .  

p P(1, 3 ,  p) P(2, 6 ,  p) 'D( l ,  3 ,  p) 'D(2, 6, p) 'D(2, 6. p) 
'D( 1 , 3 ,  ) 

0. 1 0.0 1 10  0.0002 1 .2088 2.4989 2.0672 
0.2 0.0476 0.0037 1 .4286 3 .2967 2 .3077 
0 .3 0. 1 1 39 0.0277 1 .6456 4.5843 2.7859 
0.4 0.2 105 0 . 1 203 1 .842 1 6 .39 10  3 .4694 
0.5 0 .3333 0 .3333 2 8 4 
0.6 0.4737 0.6090 2. 1053 8 .2707 3 .9286 
0.7 0.6203 0.82 14 2 . 1 5 19  7 .32 1 3  3 .4022 
0.8 0.76 19  0.9377 2. 1429 6.0440 2.8205 
0.9 0.890 1  0.9877 2.0879 4.9074 2 .3504 

Figure 1 Al l n u m bers with 4 dec i ma l  p laces a re approx i m ate 

P(A, B, p) and O(A, B, p) in relation to P(A, B, p) and V(A, B, p) 
To obtain the general formula for P (A ,  B ,  p) , we again consider the random variables 
S; = X0 + · · · +X; , which represent the gambler' s  fortune after i games, and let R; = 
S; j B represent the corresponding ratio of his fortune to his ultimate goal, for i � 0. 
(Thus R0 = AjB. )  If R; is less than 1 /2, R;+l will be either 0 (with probability q) 
or 2R; (with probability p ) , since S;+ J  will be either 0 or 2S; in the respective cases. 
Similarly, if R; is greater than or equal to 1 /2, R;+ 1  will be either 1 (with probability p) 
or 2R; - 1 (with probability q) , since S;+ J  will either B or S; - (B - S; ) = 2S; - B . 
(This recursive formula is found, in a somewhat more abstract setting, in Dubins [ 4, 
p. 85] . )  The four cases above allow us to categorize the i th bet (i � 1 )  in two ways: 

i) The i 1h bet will be the last (concluding with S; = 0, with probability q, if R;_ 1  � 
1 /2 ;  and concluding with S; = B,  with probability p, if R;_ 1  � 1 /2). 

ii) There will be an (i + 1 ) s t  bet. In that case, R;_ 1  =!= 1 /2, and if R;_ 1  has binary 
representation = .b 1 b2b3 . . .  , R; will equal the one-position shift = . hzh3b4 . . . .  
This follows since R;_ 1  < 1 /2 implies b 1 = 0 and 2R;- 1  = .bzb3b4 . . .  , while 
R; _ 1  > 1 /2 implies b1 = 1 and .b2b3b4 . . .  = 2R;_ 1  - 1 .  Proceeding inductively, 
then, it follows that the only possible value for R; , other than 0 or 1 ,  has a bi
nary representation equal to an i -position shift of the binary representation for R0 • 
As an example, the chart below depicts the possible values of R; , beginning with 
R0 = A/ B = 1 1 /32 = . 0 10 1 1 (base 2). Obviously, if R; = 0 or 1 ,  all subsequent 
R j ,  j > i ,  have the same value. For simplicity, these "inherited" values of 0 or 1 
have been omitted. 
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To determine P (A ,  B ,  p) ,  let W; denote the event that the gambler achieves his goal 
of B dollars on the i th bet. Note that W; is the intersection of the events R; = 1 and 
Rj =!= 0 or 1 ,  0 < j < i . In addition, R; can equal 1 only if R;_ 1 2::: 1 /2 .  Thus the first 
binary digit of Ri- 1 , which equals the i th binary digit of R0 must be 1 .  If Ro = A/ B = 
:L Grk , where the nk s are positive integers, it follows that Pr (W; )  > 0 if and only if i 
is equal to nk o for some k. To assure that Rj =!= 0 or 1 ,  0 < j < i ,  while R; = 1 ,  each 
of the bets 1 ,  2, . . . nk must end in a win with the exception of games n j , j < k, which 
must result in a loss . Thus Pr (W; )  = p"k-k+ 1 qk- 1 • Combining these results yields 

THEOREM 1 .  For all p, 0 < p < 1 ,  

(6) 

where the increasing sequence {nk }  represents the positions of the Is in the binary 
representation of A/ B.  

Ro R t R2 R3 Rs 

p3 q 

p 0. 1 0 1 1 0. 1 1  

O.Q lO l l O.O l l 0. 1 

0 0 0 

Figure 2 

For example, in FIGURE 2 above, P (A ,  B ,  p) = p2 + p3q + p3q2 . 
Theorem 1 shows that P (A ,  B ,  p) is actually a function of the ratio r = A/ B ,  and 

the probability p . In fact, for fixed p, P (A ,  B ,  p) = P (r, p) is a continuous function 
of the ratio r. If two ratios r1 and r2 are sufficiently close, their binary representations 
will agree in the first m digits, and according to (6), the difference in their associated 
values of P cannot exceed :L, > m  p"k -k+ l qk- 1 . This, in turn, is easily seen to be less 
than q"' if p � 1 /2, and p"' tor p 2::: 1 /2 .  Thus the difference approaches 0 as m 
approaches infinity. Similarly, it is easy to show that P is an increasing function of 
r for fixed p, and an increasing function of p for fixed r .  Note that if p = q = 1 /2, 
formula ( 6) becomes ( 1 ) ( 1 ) "k 

P A , B , 2 = :L 2 = A/B .  

The fact that an increase i n  the stakes in the classic case increases the probability 
of success (with p < 1 /2) suggests the following theorem on the optimality of the 
anxious gambler approach: 

THEOREM 2 .  (DUBINS AND SAVAGE) If p < 1 /2, P (A ,  B ,  p) is at least as large 
as the probability offered by any strategy subject to the single restriction that the possi
ble payoffs in each game consist of a loss equal to the amount staked, with probability 
q, or a gain of that same amount, with probability p. 

The proof, involving some general results about optimal strategies and Markov pro
cesses, is given by Dubins and Savage [4, pp. 87-89] . Thus, P (A ,  B ,  p) not only 
equals or exceeds P(A , B ,  p) ,  but is at least as large as any mixed strategy of the type 
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described above. In fact, it i s  the ultimate mixed strategy, involving the largest possible 
reasonable bet at each stage ! 

We now turn our attention to D(A ,  B ,  p) ,  the expected number of games, or dura
tion, in the anxious gambler approach. 

THEOREM 3 .  If A/ B is equal to the terminating binary fraction L�= I  G t, then 

D(A ,  B ,  p) = - + - - - L '!._ p"j - '!._ p"k - 1 . 1 ( 1 1 ) k- 1 ( ) j- 1 ( ) k-2 
q p q j= l p p 

If A/ B has an infinite binary representation of the above form, then 

D (A , B ,  p) = - + - - - L '!._ p"j . 1 ( 1 1 ) CXl ( ) j- l 

q p q j= l p 

(7) 

(8) 

Note: Since D(A , B, p) ,  like P (A ,  B, p) ,  depends only on the ratio A/ B (and p), we 
can always take A ,  B relatively prime. In that case, formula (7) applies if B = 2"k for 
some integer nk o and (8) is the appropriate formula in all other cases. 

Proof Suppose A/  B = L G)"j , where the sum runs from 1 to k if B = 2"k , and 
from 1 to infinity otherwise. Let N(A ,  B ,  p) denote the number of games until the 
gambler reaches a conclusion, and for all positive integers i ,  let d( i )  denote the prob
ability that N (A ,  B ,  p) = i ,  with D(i ) equal to the probability that N (A ,  B ,  p) is 
greater than or equal to i .  

B y  definition, D (A ,  B ,  p )  = L id(i ) .  We will find it more convenient, however, to 
obtain D(A , B ,  p) as the equivalent sum of the series : L D(i ) .  To that end, recall the 
notation R; which was introduced in the derivation of formula (6), and note that the 
number of games will be at least n if and only if, for all j < n - 1 ,  

i) Rj i= 1 /2 and 
ii) game j + 1 results in a win if R j < 1 /2, and 

iii) game j + 1 results in a loss if Rj > 1 /2. 

Since the binary representation for Rj is simply the binary representation for A/ B 
starting with the (j + 1 ) 81 digit, we can derive (7) by sectioning L D(i )  into parts, of 
which we show the first, second, and last: 

Il l 
L D(i )  = 1 + p + p2 + . . .  + p"l - 1 
i= l 
nz 
L D(i ) = p" l - 1 q ( 1 + p + p2 + . . . + pnz-ll J - I ) 

i= l+n 1 
"k 
L D(i )  = p"k- 1 -k+ l qk- 1 ( 1 + p + p2 + . . .  + p"k-llk- J - 1 ) 

i= l+nk- 1 

(Note that in this case we need not consider any further terms in the series since, with 
B = 2"k , D (i )  = 0 for all i > nk .) The partial sums above can be simplified as 

( 1 - p" l ) jq + _!._ (p" l - p"2 ) + _!._ '!._  (p"2 - p"3 ) + . . . 
p p p  
1 q k-2 + - - (p"k- 1 - p"k ) ' p p  
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and combining terms with like powers of p yields formula (7) .  Formula (8) follows by 
letting k approach infinity and observing that, since nk � k, the final expression in (7) 
is bounded by pqk-z and approaches 0 as k approaches infinity. • 

Notes: 

1 )  As noted above, D (A ,  B ,  p) ,  like P (A ,  B ,  p) , is actually a function of the ratio 
r = A/ B ,  and of p .  Unlike, P ,  however, D (A ,  B ,  p) = D(r, p) is a discontinuous 
function of r .  In fact, it has a removable discontinuity at every dyadic rational, and 
is continuous at all other points . 

To prove the continuity, note that if r is sufficiently close to r0 = Ao/ B0 , which 
has an infinite binary representation, the binary representation for r is equal to that 
of r0 in the first M digits . Hence, I D (r, p) - D(r0 , p) l is bounded by the tail of the 
(convergent) series in (8) and is arbitrarily small for sufficiently large M. 

On the other hand, assume B0 = 211k so that D (r0 , p) is given by (7) .  Then, if 
r > r0 is sufficiently close to r0 , its binary representation will equal that of r0 , as 
well as one or more additional binary digits , all in positions arbitrarily far from 
nk . Thus, revisiting the original expressions which gave rise to (8), we see that 
D (r, p) - D(r0 , p) is equal to ( 1 /  p) (q I Pl-1 (p"k - p"k+M) and similar terms in
volving powers of p beyond nk + M, so that limHro+ [D (r, p) - D(ro , p)] equals 
( l jp) (qjp)k- l  pnk . 

If r < r0 is sufficiently close to r0 , it has the same binary digits as r0 with the 
last digit replaced by a sufficiently large consecutive string of ones starting in the 
next position. Again, considering the term lost in the expression for D(r0 , p) and 
the alternative terms introduced shows that limHro- [D (r, p) - D(ro , p)] is also 
equal to ( 1 /  p) (q I p)k- l  p"k . Thus, D (r, p)  has a limit as r approaches r0 and has a 
removable singularity at r = r0 = A0/ B0 with a "gap" equal to ( 1 /  p) (q / p)k- l  p11k ,  
where B0 = 2"k and k is the number of ones in the binary expansion of A .  

2) If p = 1 /2, all the terms of the series in (7) and (8) equal 0 .  Hence, as long as 
A ,  B are relatively prime D(A/B ,  1 /2) is independent of A .  In fact, D (A/B , 1 /2) 
equals 2 - ( l j2)k- l  if B = 2k , and is equal to 2 otherwise. Thus, with p = 1 /2, 
the countably many discontinuities can be viewed as the markings on an infinitely 
detailed ruler. Imagine a wooden ruler of width 2 em, with a 1 em mark (at the 
top of the ruler) above the center of the ruler, a 1 /2 em mark above the points 
representing the fractions 1 I 4 and 3 I 4 and so on. Then the length of unmarked 
wood above each point A/  B represents the value of D (A/ B ,  1 /2) at that point. 
See FIGURE 3 below. 

D ( r , 1 12 ) 

2 ���������,���������������,����� 
1 -

0 �--------------------��----------------------e r = A lB 
1 

2 
Figure 3 
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3 )  For fixed p, D(r, p )  i s  bounded. If 

p < - sup D(r, p) = - + 1 - - ql = - .  1 1 ( p ) 2:: · - 1 1 
- 2 ' ,. q q p 

If p :::: 1 /2, sup,. D(r, p) = 1 jq . This follows from (8) or from the identity 
D(A/ B ,  p) = D ((B - A)/ B ,  q ) .  

To further examine the relation between D(A ,  B ,  p) and V(A , B ,  p) ,  we first es
tablish the following results about the classic gambler problem: 

LEMMA 1 .  For all values of p and all positive integers A, P (A , A +  1 ,  p) ::::: 
2Apj(A + 1 ) .  

Proof The proof i s  by  induction on A .  If A =  1 ,  P( l , 2 ,  p) = p and the result is 
proven. To complete the proof, let Pk = P(k, k + 1 ,  p) . Assume Pk ::::: 2kpj(k + 1 ) .  
The identity Pk+ 1 = p + q Pk Pk+ 1 shows, then, that Pk+1 = pj ( l  - q Pk) ::::: 
(k + 1 )  pj(k + 1 - 2pqk) ::::: 2(k + 1 )  pj(k + 2) , since pq ::::: 1 /4, and the proof 
is complete. • 

LEMMA 2 .  For all positive integers A < B, and all p ::::: 1 /2, V(A , B ,  p) :::: A. 
Proof According to (3) , V(A , B, 1 /2) = A (B - A) :::: A .  If p < 1 /2, we note 

the obvious inequality V(A , B ,  p) :::: V(A , A +  1 ,  p) = (A - (A + 1 )  P(A,  A +  
1 ,  p)) j (q - p) ,  according to (2) . Hence, according to Lemma 1 ,  V(A , B ,  p) :::: 
A( l - 2p)j (q - p) = A. • 

The identity V(A , B ,  p) = V(B - A ,  B ,  q )  shows that the corresponding inequal
ity for p :::: 1 /2 is V(A , B ,  p) :::: B - A.  

Note that Lemma 2 is, i n  a sense, unimprovable since V(A , A +  1 ,  1 /2) = A  and 
for any fixed A and B, limp--70 V(A , B ,  p) = A .  

Finally, to complete our sequence of  results highlighting the connection between 
the chance of success and the expected number of games, we establish the following 
complement to Theorem 2: 

THEOREM 4 .  For all integers A < B, and 0 < p < 1 ,  

D (A ,  B ,  p) ::::: V(A , B ,  p) . 

As an immediate corollary, D (A ,  B ,  p) = D(AjS,  BjS ,  p) ::::: V(A/S,  BjS ,  p) for 
all common divisors , S, of A and B .  Thus, the duration in the anxious gambler ap
proach is less than the corresponding duration using fixed bets of any size. 

Proof If B = 2 or B = 3, the classic approach is identical with that of the anxious 
gambler. Thus we need only consider B :::: 4. If p = 1 /2, D (A/  B ,  1 /2) ::::: 2 (see note 
2 following Theorem 3) .  On the other hand, V(A , B ,  1 /2) = A(B - A) > 2 since 
B :::: 4. Thus we can assume p "!= 1 /2, and by the symmetry of both D and V about 
p = 1 /2, we need only consider p < 1 /2. We complete the proof by considering four 
cases, where the inequality is fairly tight in the first case: 

a) Assume A/B ::::: 1 /4. Then D(A/B ,  p) ::::: lim D(AjB,  p) as A/B -+ 1 /4 , which 
is equal to D( .00 1 1 1 1 1 1 1 1  . . .  , p) = 1 + p + p2 + p2q + · · · = 1 + 2p. On the 
other hand, since A ::::: B/4, V(A , B ,  p) :::: V(l , 4, p) . This is clear since B is at 
least 3 more than A ,  so that exchanging A and B for 1 and 4, respectively, can 
only decrease the value of V. Note then that with A = 1 and B = 4, the number of 
games will equal 1 with probability q and will equal at least 3 with probability p .  
Thus V( l ,  4 ,  p) :::: q + 3p = 1 + 2p . (As an illustration of the closeness of  these 
estimates for small p, V(lj40, . 1 ) is roughly 1 . 1 1  while 1J( 1 , 40, . 1 )  is about 1 .25) .  
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b) If 

- < - < - 1J - p < lim D - p as - -+ -
1 A 1 (A ) (A ) A 1 
4 B - 2 ' B ' - B ' B 2 

= D (.Ol l l l l l  . . .  , p) < 2 ,  

while B � 4 implies A >  1 and 'D(A , B ,  p) � A �  2. 
c) If AjB > 1 /2, 'D(A , B, p) � A >  B/2. To find an upper bound for D(AjB ,  p) 

note that if B _::: 2n , then AjB _::: 1 - 1 /2n and D(AjB ,  p) _::: lim D (AjB ,  p) as 
Aj B -+ 1 - 1 /2" = D(. 1 1 1 1 1 10 1 1 1 1  . . .  , p) where the 0 appears in the (n - l ) st 
position. Hence D(Aj B ,  p) .::: n, and D(A , B ,  p) .::: flog2 Bl , where the latter 
symbol represents the smallest integer � log2 B .  It follows that D (Aj B ,  p) _::: 
'D(A , B ,  p) as long as flog2 Bl  .::: B j2. It is easy to see that this inequality is 
valid for all B � 4 with the exception of B = 5. Since A > B j2, the proof will 
be completed by considering the two special cases, A = 3 and A = 4: 

d) D(3/5 , p) = D(.00 1 100 1 1 . . .  , p) = 1 + p + p2 + p2q + p2q2 ( 1  + p + p2 + 
p2q)  + . . .  < ( 1 6/ 1 5) ( 1  + p + p2 + p2q ) ,  since p2q2 < 1 / 1 6  and D(3j5 , p) < 3 .  
A similar argument shows that D (4/5 , p) = D(. l lOO l lOO . . .  , p )  < 4 .  On  the 
other hand, 'D(3 , 5 ,  p) � 3 and 'D(4, 5 ,  p) � 4, by Lemma 2. • 

The figure below depicts all values of the four variables discussed for p = . 3  and 
B = 20, as well as the difference between P (A/  B ,  p) and P(A , B ,  p) ,  and an indica
tion of the "gap" at the points of discontinuity of D (Aj B ,  p) . Note that in this chart, 
the largest difference between P and P corresponds to the value of A, namely 17 ,  
which also has the largest associated value of 1J. As expected, the correlation between 
these two variables is very high, although the exact correspondence of their maxima 
does not hold for all values of B and p .  

A P (A/20 , . 3 )  P(A , 20 , . 3 )  P - P D(A/20, . 3 )  "Gap" 'D(A , 20 , .3 )  

1 0.0043 0.0000 0.0043 1 .4368 2.5000 
2 0.0 144 0.0000 0.0 144 1 .4560 5 .0000 
3 0.0300 0.0000 0.0300 1 .4858 7.5000 
4 0.0480 0.0000 0.0480 1 .5200 9.9999 
5 0.09 0.0000 0.0900 1 .3 0.3 12 .4999 
6 0. 100 1  0.0000 0. 100 1  1 .6 1 92 14 .9996 
7 0. 1 236 0.0000 0. 1 236 1 .6640 17 .4992 
8 0. 160 1  0.0000 0. 1 60 1  1 .7334 19 .998 1 
9 0.2020 0.000 1 0.20 19  1 .8 1 34 22.4955 

10  0 . 3  0.0002 0.2998 1 1 24.9896 
1 1  0.3 10 1  0.0005 0.3096 2.0 192 27 .4756 
12  0 .3336 0.00 1 1 0 .3325 2.0640 29.943 1 
1 3  0.370 1 0.0027 0.3674 2. 1 334 32.3672 
14 0.4 120 0.0062 0.4058 2 .21 34 34.6902 
1 5  0.5 1 0.0 145 0.4955 1 .7 0.7 36.777 1 
16  0 .5336 0.0337 0.4999 2.4448 38 . 3 1 32 
17  0 .5884 0.0787 0.5097 2.5494 38.564 1  
1 8  0.6735 0. 1 837 0.4898 2.7 1 14 35 . 8 1 63 
19  0.77 14  0.4286 0. 3428 2. 8979 26.07 14  

Figure 4 A l l n u m bers with  4 dec i m a l  p l aces a re approx i m ate 
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Im plicati ons for sporting events and lotteries 

The equivalence of the inequalities in the proof of Proposition 3 showed that an in
creased probability of success, with p < 1 /2, goes hand in hand with a reduction in 
the expected number of games . Theorems 2 and 4 reinforced this idea. This basic idea 
is a bit of conventional wisdom understood by all sports fans (and commonly expressed 
as "anything can happen in a short series") . That is, the probability of a weaker team 
winning a playoff series increases as the number of games in the series decreases. 

While this element of unpredictability lends additional interest to shorter series, the 
various leagues make adjustments to decrease the likelihood that a clearly inferior team 
will win a sequence of playoff series and emerge as the champion. In some cases, either 
the lowest ranked teams must play an additional round, or the highest ranked teams 
draw a "bye" , playing one round less .  In many sports , in the early, shorter rounds , the 
lowest ranked teams must compete against the highest ranked, thereby reducing the 
probability of a win by the underdog, in spite of the shortness of the series . 

Lotteries offer an interesting example of increasing the probability of reaching a 
goal in an unfair game by minimizing the duration of the game. Suppose, for example, 
that a person with $ 10  decides to take a stab at earning $ 10,000 by continually playing 
a game such as blackjack where his probability of winning each game might be .4. 
Then, betting $10 at a time, the probability that he will reach his goal, P ( l ,  1000 , .4) , 
would be less that 10- 175 • If he follows the anxious gambler strategy, his probability 
of success, P ( 10 ,  1 0000 , .4) would go up to just over .000 1 .  According to Theorem 2, 
this is the optimum probability as long as each bet involves a possible win and a pos
sible loss of equal value. 

His probability of success would be almost five times as high, however, if he were 
given a 1 /2000 chance with a payoff of 999 : 1 .  This phenomenon, in spite of the ob
vious decrease in the "fairness" of the game (from an expected loss of $ .20 per dollar 
waged to an expected loss of more than $ .50 per dollar waged) , may be attributed to the 
fact that the duration of the game has now been reduced to its ultimate low value of 1 .  
It also demonstrates an intuitive sense among the many people who buy lottery tickets 
or play slot machines , even when alternative games with a higher expected value are 
available. The truth is that a lottery ticket may actually offer the best available chance 
of winning a million dollars . Sadly, a recent survey [10] showed that many Americans 
also believe that winning a lottery or sweepstakes offered them the overall best chance 
to obtain half a million dollars or more in their lifetime. Less than half agreed with the 
assertion that "saving and investing some of their income was the most reliable route 
to wealth." 

An infinitely rich adversary 

In the classic case of gambling with fixed stakes, it is possible to consider playing 
against an infinitely rich adversary. While this adversary cannot be ruined, we can 
interpret P(A , oo, p) as the probability that the gambler with initial fortune A will 
also never be ruined (and, in fact, will get infinitely rich) . Formula ( 1 )  shows that 
limn-Hx> P(A , B ,  p) = 0 if p ::::: 1 /2. However, if p > 1 /2, limn�oo P(A ,  B ,  p) = 
1 - (q I p )A so that there is a positive probability of survival, and a corresponding 
infinite duration: lim8�00 'D(A , B ,  p) = oo. 

On the other hand, using the anxious gambler approach versus an infinitely rich 
opponent would be obviously catastrophic. We have already seen that increasing the 
stakes reduces the probability of success when p > 1 /2. In this case, the probability of 
success would shrink to 0, since the probability of surviving through n games would 
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equal pn . In fact, N (A , oo, p ) ,  the number of games until ruin, would have a geometric 
distribution with probability q ,  and D(A ,  oo, p) would equal the finite value 1 /q (see 
Note 3 following Theorem 3) .  Hence we would have the paradoxically unfortunate 
situation where the expected value after any finite number of games would be positive 
and increasing, while the ultimate expected value would be 0. 
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5 0  Years Ago i n  the MAGAZI N E  

In Volume 24, No. 1 (January-February, 1 95 1 ) ,  there appeared an article "On 
approximating the roots of an equation by iteration," by Jerome Hines. Mr. Hines 
explained ways of accelerating Picard iteration, including a nice exposition of 
Newton's Method. His biographical sketch included the following : 

Jerome Hines, well known singer with the Metropolitan Opera Company, 
wrote his paper, appearing in this issue, while an undergraduate at the Uni
versity of California at Los Angeles . While in college he majored in both 
chemistry and mathematics . . . . Mr. Hines won the Metropolitan $ 1000 
Caruso award and has been with the Metropolitan since 1946-47 . He has 
more than 30 operatic roles in his repertoire, including that of Swallow 
which he created at the Metropolitan premiere of "Peter Grimes ." Despite 
the crowded life of a Metropolitan star Mr. Hines manages to continue his 
studies in mathematics, in which he became especially interested while in 
college . . . .  
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Counting Perfect Matchings in Hexagonal  
Systems Associated with Ben zenoids 

F R E D  j. R I S P O L I  
Dow l i n g  Col l ege 

Oakda l e, NY 11769 

Introduction 

Many hydrocarbons involve hexagonal rings ;  benzene, consisting of a single hexagon 
of carbons with hydrogens attached, is the original example. It turns out that the num
ber of perfect matchings in certain associated graphs is relevant to the chemistry of 
these hydrocarbons. Furthermore, standard methods of undergraduate linear algebra 
and discrete mathematics can be used to count the matchings, and familiar counting 
numbers show up. In this article we present this easily accessible but seemingly little 
known connection between chemistry and mathematics . 

According to the chemistry folklore, the German chemist August Kekule ( 1 829-
1 896) discovered the molecular structure of benzene after he dreamed of a snake swal
lowing its own tail. Apparently, the dream led to his conjecture that benzene consists 
of 6 carbon atoms, each linked to 1 hydrogen atom via a carbon-hydrogen bond, and 
that the carbon atoms are linked to each other via a cycle of length 6 consisting of 
alternating single and double carbon-carbon bonds . FIGURE 1 illustrates a molecular 
model of benzene. Kekule 's discovery initiated the study of special types of graphs 
used to model benzene-like molecules called benzenoids . 

H 
I H

'-..... 
/C� / H  

c c 
I I  I c c 

H �  '-.....c �  '-..... H 
I H 

Figure 1 The mo lec u l a r  structu res associated with benzene 

A graph G is called 2-connected if it is connected and at least 2 vertices must be 
removed to make G disconnected. A hexagonal system is a 2-connected planar graph 
such that each bounded face can be drawn (and will be drawn) as a regular hexagon 
(see, e .g . ,  FIGURES 2-5) .  Notice that this condition forces the valence (i .e . ,  degree) of 
each vertex in a hexagonal system to be either 3 or 2; vertices of valence 2 can appear 
only on the unbounded face. Moreover, each pair of adjacent hexagons has exactly one 
edge in common. 

Given a graph G,  a perfect matching M in G is a subgraph containing all the ver
tices of G such that every vertex has degree 1 ;  the number of perfect matchings in G 
is denoted by c:I> (G) .  In essence, a perfect matching is a pairing of two subsets (say, 
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white and black) of vertices . For example, in FIGURE 2 the thick edges in H2 illus
trate a perfect matching. The reader should confirm that ct> (H! ) = 2, ct> (H2) = 3, and 
ct> (H3) = 0. (Hint: For H3 , consider the parity of black and white vertices . )  

0 
Figure 2 H exagona l  systems.  <fl ( H1 )  = 2, <fl ( H2 )  = 3, and <fl ( H3 )  = 0 

A benzenoid is a special type of hydrocarbon molecule. Given a molecular model of 
a benzenoid, its corresponding hexagonal system H is obtained by removing the edges 
representing carbon-hydrogen bonds and letting the remaining edges of H represent 
either single or double carbon-carbon bonds . The graph H1 in FIGURE 2 is the hexago
nal system corresponding to benzene. It turns out that all hexagonal systems that arise 
from benzenoids admit perfect matchings, and that each perfect matching is a possible 
location for all the double carbon-carbon bonds . Conversely, experimental chemistry 
tells us that a benzenoid may be synthesized for each hexagonal system containing a 
perfect matching. Therefore, chemists are interested in knowing, for a given hexagonal 
system H, whether ct> (H) = 0. In addition, chemical properties of a benzenoid such 
as stability and energy levels depend on the number of perfect matchings in its cor
responding hexagonal system, so chemists seek efficient methods to calculate ct> (H) . 
(For more details , see [2] , [5] , and [7] . )  

For an arbitrary graph G with n vertices, determining whether ct> (G) = 0 can be 
solved using Edmond's matching algorithm, which requires O (n3 ) operations (see, 
e .g . ,  [3]) .  For hexagonal systems, more efficient algorithms are known (see, e .g . ,  [4] 
and [6] ) .  However, computing ct> (G) is known to be an NP-hard problem (that is, 
there is no algorithm to compute ct> (G) involving O (nk) operations, where k is a fixed 
constant) . This is so even if G is bipartite (that is, a graph with vertex set V = V1 U V2 , 
such that V1 n V2 = 0 and all edges join vertices in V1 to vertices in V2 . (For more on 
matching algorithms and computing ct>, see [3] . )  

For some special classes of graphs, such as planar graphs, ct> is more easily de
termined. Here we describe how to determine ct> for hexagonal systems in particular, 
by calculating the determinant of a certain adjacency matrix. We also obtain simple 
explicit formulas for ct> for some special classes of hexagonal systems. 

Counting perfect matchings 

Consider the hexagonal systems given in FIGURE 2 .  All three graphs are bipartite, 
since we can color the vertices black and white such that no two adjacent vertices have 
the same color. In fact, every hexagonal system is bipartite (this can be proved by in
duction on the number of hexagons), so every hexagonal system may be represented 
by a matrix, defined as follows .  Let H be a hexagonal system and let E denote the 
set of edges in H. Let B U W be the set of vertices of H, where B = {b 1 , . . •  , b,J , 
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W = {wt . . . .  , wm } ,  and all edges in H join vertices in B to vertices in W .  The biadja
cency matrix, written A (H) = [ aij ] ,  is defined by aij = 1 if the edge { b; , w j }  E E, and 
aij = 0 if {b; , wj } rJ_ E .  

We'll assume henceforth that B and W contain the same number of  vertices (i .e . ,  
I B I = I W I )  since this is a necessary condition for the existence of a perfect matching. 
In this case, the biadjacency matrix is square. For example, the biadjacency matrix for 
the hexagonal system H2 in FIGURE 2 is 

1 
1 
0 
1 
0 

0 
1 
0 
0 
1 

0 
0 
1 
1 
0 

Recognizing a hexagonal system H as a bipartite graph with edges from B = 
{bt . . . .  , b11 } to W =  {w1 , • • •  , w11 } sets up a correspondence between perfect match
ings in H and permutations of { 1 ,  2, . . .  , n } .  For a given hexagonal system H and a 
perfect matching M in H, with associated permutation a in the symmetric group Sn , 
we define the sign of M to be + 1 if a is an even permutation and - 1  if a is odd. 

For instance, the perfect matching shown in H2 of FIGURE 2 corresponds to the 
permutation G � i : n .  Thus, for every hexagonal system H with I B I = I w I there is a 
one-to-one correspondence between the nonzero terms in the expansion of the deter
minant of A (H) and the perfect matchings in H .  Indeed, more is true: 

THEOREM 1 .  For a hexagonal system H, ¢ (H) = l det A (H) I .  

Notice that since each entry a;j i n  A (H) i s  either 0 or 1 ,  the nonzero terms in  the 
expansion of det A (H) are all either 1 or - 1 .  Thus the theorem holds if we know that 
all the nonzero summands in det A (H) have the same sign. Lemmas 1 and 2 imply 
this , and so prove Theorem 1 .  

In what follows we let I G 1 denote the number of edges in a graph G. We also recall 
Euler 's formula for a connected planar graph G :  If G has v vertices, e edges, and f 
faces (including the unbounded face), then v - e + f = 2. (For a proof, see, e .g . ,  [8] . ) 

LEMMA 1 .  Let H be a hexagonal system and let M and M* be peifect matchings 
in H. Then every cycle C in M U M* satisfies I C I  = 2 mod 4. 

Proof Let C be a cycle in M U M* . Let r be the number of hexagons inside C,  
Vint the number of vertices inside C ,  and eint the number of edges inside C .  Applying 
Euler' s formula to C and its interior gives (vint + I C I ) - (eint + I C I )  + (r + 1 )  = 2, so 
eint = Vint + r - 1 .  Since every hexagon has 6 edges and every edge in the interior of 
C is in exactly two hexagons, the number of edges in C and its interior is eint + I C I  = 
6r - eint · The last two equations imply that I C l  = 4r - 2vint + 2. 

To complete the proof we need only show that vint is even. Since the edges on C 
come alternately from M and M* , no vertex on C can be matched to any vertex in the 
interior of C by an edge in M. Since H is a planar graph and M is a perfect matching, 
each vertex b in the interior of C lies in a unique edge {b,  w} in M, with w also in the 
interior of C. Thus Vint is even. • 

LEMMA 2 .  In a hexagonal system H, all peifect matchings have the same sign. 
Proof (The example following this proof illustrates the idea.) Let M and M* be 

any two perfect matchings in H. Without loss of generality, we may label the vertices 
in H so that M corresponds to the identity permutation, say a .  Then M* corresponds 
to a permutation we denote by a * .  
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Now M U M* is a union of disjoint cycles and isolated edges. Let C1 , . • •  , Ck de
note the cycles in M U M* . By Lemma 1 ,  I C I  = 2 mod 4 for all i .  Observe that each 
C corresponds to a cyclic permutation, say a; . Moreover, the length of each cyclic 
permutation a; is I C; I /2, which is odd. Therefore each a; can be factored into an even 
number of transpositions .  Since a*  = a · a1 · a2 • • • ak , both a and a*  have the same 
��. . 

Example . Consider the hexagonal system H given in FIGURE 3 .  Let M and M* 
be the perfect matchings shown in the right-hand figure: the solid edges are in M, 
the dotted edges in M*, and the thick edges in M n M* . Then M corresponds to the 
identity, and M* corresponds to a*  = G � � i � � i 188961� J6) . Notice that M U M* con
tains cycles of length 6 and 10, and that a* can be factored into cyclic permutations 
of length 3 and 5, given by a*  = a1 · a2 , where (in cycle notation) a1 = ( 1 s 4) and 
az = (6 7 1 1  10 9) . 

H M u M* 
Figure 3 The u n i o n  of perfect matc h i ngs i n  a hexagona l  system 

In summary, to compute ct> (H) for a hexagonal system H, label the vertices, ob
tain a biadjacency matrix A (H) ,  and calculate I det A (H) I .  For example, the matrix 
A (H2) for H2 in FIGURE 2 has determinant 3 ,  which verifies that ct> (H2) = 3 .  A larger 
example-with 980 perfect matchings-is shown in FIGURE 4. This counting method 
is due to Kasteleyn [5] ; a comprehensive discussion also appears in [3] . 

Special classes of hexagonal systems Certain classes of hexagonal systems have 
special structures that further simplify computing ct> .  Several examples appear in FIG-

Figure 4 A hexagona l  system with 980 perfect matc h i ngs 
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The linear chain P [5, 1 ]  

The rectangular hexagonal 
system R [5,3] 
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Fibonaccene chains 

The parallelogram hexagonal system P[5,3] 

Figure 5 Spec ia l  c lasses of h exagona l  systems  

URE 5 .  For convenience, we draw all hexagonal systems so that (as shown) each 
hexagon has east and west vertical edges ; the remaining edges are northeast, north
west, southeast, and southwest. 

In Theorems 2, 3, and 4, which follow, we give formulas for counting perfect match
ings in the systems of FIGURE 5 .  Various chemists have discovered these formulas ; for 
more details, see [7] . 

A hexagonal system is called a fibonaccene chain if it consists of a chain of 
hexagons H1 , . . .  , Hp , with H1 on top, and only the following shared edges : For i 
even and 1 < i < p, Hi shares its northwest edge with Hi- l and its southwest edge 
with Hi+I ; H1 and Hp share edges as indicated in FIGURE 5 .  The name is due to the 
fact that <I> satisfies a Fibonacci-style recurrence relation, as we now prove. 

THEOREM 2 . Let H be afibonaccene chain with h hexagons; let ah = <I> (H). Then 
ao = 1, a1 = 2, and ah = ah- 1 + ah-2for h ::=: 2. 

Proof Let H be the chain H1 , . . .  , Hh , and let M be a perfect matching in H. If 
M contains the northwest edge of H1 , it must also contain the southwest edge of H1 
and the east vertical edges of both H1 and H2 . The remaining edges in M can be any 
perfect matching in the hexagonal system H3 , . . .  , Hh . Hence there are ah_2 perfect 
matchings in H that contain the northwest edge of H1 • 

If, instead, M contains the northeast edge of H1 , it must also contain the west 
vertical edge of H1 , and the remaining edges of M can now be any perfect matching 
of H2 , • • •  , Hh . Hence there are ah- l perfect matchings in H that contain the northeast 
edge of H 1 . Since every perfect matching of H contains either the northwest edge or 
the northeast edge of H� > but not both, ah = a11 - 1 + ah-2 · • 

FIGURE 5 shows fibonaccene chains with 5 and 6 hexagons . By Theorem 2, we 
may calculate <I> using the Fibonacci sequence 1 ,  2, 3 ,  5 ,  8 ,  1 3 ,  2 1 ;  here a5 = 1 3  and 
a6 = 2 1 .  
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A hexagonal system consisting of h hexagons such that all adjacent pairs of 
hexagons share exactly one vertical edge and no nonvertical edges is called a linear 
chain of length h. A parallelogram hexagonal system, denoted by P [h ,  p ] ,  consists 
of p linear chains £ 1 ,  • • •  , Lp , each of length h, such that for i = 1 ,  . . .  , p - 1 ,  all 
southern edges of hexagons in L; , except for the southeast edge of the eastern-most 
hexagon in L; , are also northern edges of hexagons in L;+ t .  except for the northwest 
edge of the western-most hexagon in Li+ l ·  FIGURE 5 shows P [5 ,  1] and P [5 ,  3] .  

For n and r nonnegative integers, with 0 ::::: r ::::: n ,  we write 

n !  
C (n , r) = --

r ! (n - r ) !  

THEOREM 3 . For a parallelogram hexagonal system P [h ,  p ] ,  w e  have 

<f> (P [h ,  p])  = C (h + p ,  p) . 

Proof. The proof is by induction on k = h + p.  Clearly, the formula holds for 
P [ l ,  1 ]  (which corresponds to benzene). Notice that P [ 1 ,  h] and P [h ,  1 ]  are linear 
chains of length h ;  it is easy to see that <f> (P [h ,  1 ] )  = h + 1 .  Thus the formula holds 
for both P [h ,  1 ] and P [ 1 ,  h ] .  Assume that the result holds for all parallelogram hexag
onal systems P [h ,  p] with h + p = k .  

Consider P [h ,  p + 1 ]  (the case P [h + 1 ,  p] is  similar). Let L b e  the northern-most 
linear chain of P [h ,  p + 1 ] ,  and let M be a perfect matching of P [h ,  p + 1 ] .  Suppose 
that M contains the eastern-most vertical edge of L. Then M must also contain the 
northwest edge of every hexagon in L .  The remaining edges in M can be any perfect 
matching of the hexagonal system P [h ,  p + 1 ]  with L removed-that is, P[h ,  p ] .  By 
the inductive assumption, there are C(h + p ,  p) such perfect matchings. 

Now suppose that M contains the eastern-most northeast edge of L. Then M must 
also contain the southeast edge of the eastern-most hexagon in every linear chain (i .e . ,  
row) in P [h ,  p + 1 ] .  The remaining edges of M can now be any perfect matching of 
the hexagonal system P [h ,  p + 1 ]  with the eastern-most hexagon removed from every 
row-that is, P [h - 1 ,  p + 1 ] .  By the inductive assumption, there are C (h + p ,  p + 1 )  
such perfect matchings. 

Every perfect matching in P [h ,  p + 1] contains either the eastern-most vertical 
edge of L or the eastern-most northeast edge of L, but not both. Thus <f> (P [h ,  p + 
1 ] )  = C (h + p ,  p) + C (h + p ,  p + 1 ) ,  so by Pascal's identity we have <f> (P [h ,  p + 
1 ] )  = C (h + p + 1 ,  p + 1 ) .  • 

A rectangular hexagonal system, denoted by R [h ,  p ] ,  consists of p linear chains 
L1 . . . .  , Lp of length h, together with p - 1 linear chains L 1 ,  • • .  , Lp-l of length 

h - 1 ,  such that for i = 1 ,  . . .  , p - 1 ,  all northern edges of L; are southern edges 
of L ; ,  and all southern edges of L; are northern edges of Li+l · For example, R[5 ,  3] 
appears in FIGURE 5 .  A proof of the following theorem is left as an exercise. 

THEOREM 4. For a  rectangular hexagonal system R [h ,  p], we have <f>(R[h ,  p]) = 
(h + 1)P .  

By Theorem 3 , <f> ( P [5 ,  3] )  = C (8, 3) = 56; by Theorem 4, <f> ( R [5 ,  3] )  = 63 = 
2 16. 

It is natural to wonder: Are the special classes discussed here common in nature? 
The answer is yes. For example, naphthacene is the benzenoid whose hexagonal sys
tem is the linear chain R [4, 1 ] ;  it is used to help derive the antibiotic aureomycin. Chry
sene, the benzenoid whose hexagonal system is a fibonaccene chain with 4 hexagons, is 
present in coal heated at high temperatures .  Benzol a]pyrene, a compound known to be 
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present in tobacco smoke, can be obtained by combining pyrene (which corresponds to 
P [2, 2] ) with benzene. For further discussion about some remarkable chemical prop
erties of benzenoids (also known as aromatic compounds), and connections between 
chemistry and hexagonal systems, see [1] or [7] . 

Acknowledgment. We thank the referee for many useful suggestions. 
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Cyc lohexane and Honeycomb Cel l s  

The benzene rings of  Rispoli ' s  article are planar. Six carbon atoms can also join 
to form a skew hexagon, as seen in the cyclohexane molecule. Here, the bonds 
between carbons are single bonds, and each carbon has two hydrogen atoms 
attached. The cyclohexane molecule has been superimposed on the ideal shape 
of a honeycomb cell , FIGURE 2A from the next article. Is it a coincidence that 
these two skew hexagons from nature have exactly the same shape? 

Thanks are due to John Tho bum of the Santa Clara University Department of Chemistry. 
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Using Less Calculus in Teaching Calculus : 
An Historical Approach 1 

R. M .  D I M I T R I C  
Berkeley Bas ic Research I n stitute 

1176 U n iversity Ave. 
Berkel ey, CA 94702 

I would like to compare through some historical examples the use of non-calculus 
(mostly geometric or algebraic) and calculus methods in teaching students mathemati
cal content. In the present college and precollege school system the latter methods are 
overdone at the expense of the former, in cases where both can be used to explain ma
terial or solve problems . Examples that follow are aimed at students of varying levels 
of sophistication. These range from facts about e to the ideal shape of honeybee cells .  

Introduction 

It is well known [5] that the original Euclid's Elements contained few geometrical 
drawings, abstract in their nature. Neat explanatory drawings and constructions were 
added by Euclid's translators and commentators at times when doing mathematics 
by geometric means flourished. There are indications that Isaac Newton did not like 
the prevalent geometric method of his time (as much as he utilized it) [7] and that 
this dislike played a role in his shared discovery of calculus. Gradually, geometric 
reasoning and visualization were forgotten and analytic methods became king in texts 
of Lagrange, Russell [19] , and other members of the French, German and English 
mathematics schools .  

Calculus nowadays has the same role category theory will have in  the future : i t  i s  
used mainly as  a unifying and generalizing tool that can tie together seemingly separate 
problems by resolving them via the same (calculus) methods . Both of these tools (and 
here we refer to them as tools in teaching) are often overdone and abused to the point 
where simple problems are treated with the heavy machinery that is inappropriate for 
a particular context. This practice has negative didactic consequences for it obfuscates 
intuition and reduces learning to rote mechanical performance of calculus rules . I think 
that a careful combination of ("purely") non-calculus (geometric/algebraic) and calcu
lus methods is most conducive to learning new material in analysis and demonstrating 
its real powers . History of mathematics offers a good source of examples that can be 
used to compare geometric and calculus methods . 

Powers and radicals 

It is useful to teach easy properties of powers and radicals, such as the following: If 
a > 0, then ::(ii > 1 for a > 1 and ::(ii < 1 for a < 1 ;  in addition, lim11_,00 ::(ii = 1 .  
Now, what about a more difficult question, namely to find lim,�--->oo .ifii? A hint might 
come from playing with the calculator (there is in fact a sheer pleasure of calculating 
the values of .ifii,):  ,J2 � 1 .4 142, � � 1 .4422, � (I pause here to break the routine 

1 The author gave a talk on this subject at the AMS-MAA Meeting in Baltimore, January 1 998, in a special 
section on the role of history in teaching mathematics .  
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and ask the students for the answer, without a calculator-they should note the delight
ful fact that the fourth root of four equals V2 � 1 .4 142), � � 1 . 3797, .W � 1 . 3480, 
::ti � 1 . 3205 , and so on. (I branch out by asking them to find all natural numbers c, 
d, such that the c-th root of c is same as the d-th root of d ;  in fact, 2 and 4 are the 
only such pair, which can be inferred from the subsequent discussion. )  Some patterns 
in these roots would emerge, namely that -V'Ji first increases, then decreases (where 
the tum happens between 2 and 4) and if one goes far enough, one might see that 
the sequence converges to 1 ,  which, of course, can be rigorously justified. The notion 
of powers with fractional exponents should have been already discussed and this is a 
good time to talk about exponents that are not necessarily rational. I leave students to 
ponder on the lingering questions such as 

Which is greater: {/C or .ifd, for c, d > 0? ( 1 )  

and whether indeed limn-->oo -V'Ji = 1 .  In fact, these question are answered by exploring 
the number e, as follows .  

The Euler number e 

If thou lend money to any of my people that is poor by thee, thou shalt not be 
to him as an usurer, neither shalt thou lay upon him usury. (Exodus 22 :25 ,  King 
James Version; see also Leviticus 25 :36 and Deuteronomy 23 : 1 9,20) 

Discussions on powers should also lead to an introduction of e, a number not as 
famous as rr at the elementary level (although rr = ln H) .  An enticing way to in
troduce e is through the mixed-up envelopes problem of Nikolaus Bernoulli I ( 1 687-
1759) (see [18, p. 46] , where reference is made to De Montmort: Essai d 'analyse sur 
les jeux de hasard, Paris , 1 7 1 3) :  suppose n letters are written to n different persons, 
whose addresses are written on n different envelopes . What is the probability that all 
n letters will be put in wrong envelopes? (Brawner [4] and Margolius [15] present 
nice discussions of this and similar problems in the MAGAZINE.) It turns out tHat this 
probability is 1 I e when n ---+ oo. This reciprocal is in fact close to the "base" that John 
Napier ( 1 550-16 17) first used when he anticipated what later became the familiar log
arithms. His contemporary Jobst Burgi ( 1552-1632) had similar ideas, except his base 
was close to e. This approach is somewhat convoluted and I prefer to ask this question 
after I bring e into the picture as follows .  

By way of a non-rigorous (but inspiring) presentation, I also avoid introducing e the 
way Euler ( 1 707-1783) introduced it (via the infinite binomial series [9]) ,  and use in
stead the computation of interest: $ 1 is deposited at 1 00% annual interest compounded 
n times per year. It is plausible that the "bankers" have arrived at these calculations be
fore everybody else, minus the problematically high interest rate. Whence the amount 
has grown to ( 1 + 1 In)" at the end of year one, or to ( 1 + r In ) ''x , after x years , if the 
annual rate is r .  

For nonstop compounding we let n grow unchecked and want to see how much 
money is available at the end of a year. At the rigorous level, this sequence is shown to 
be convergent, and at the relaxed level calculators come in handy to dispel the popular 
student opinion that the former sequence converges to 1 ,  rather than to the new myste
rious number e (as shown by Daniel Bernoulli ( 1 700-1782)). The money accumulated 
cannot be $ 1 for another reason: surely the interest added something to the principal . 
Note that if the money is left to mature for time x and at the same interest rate, with 
simple interest, then the money grows to 1 + x .  
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It is worth noting that with continuous compounding at the rate r during a period x 
the amount accumulated is the same as with continuous compounding at the rate x and 
the time r .  2 This may look intuitively clear to some, and to the others the fact that both 
of the following two quantities converge to erx should be convincing enough to that 
end (the standard replacement r In ,  x I n = 1 I k, establishes this quickly, for large n ) :  

( r )xn ( x )rn 
1 + - � 1 + -

n n 
(2) 

By this heuristic, the exponential function y = ex is introduced. My question is always: 
"What is more profitable : to have computation of interest done at the year end at 100% 
interest, or at 50% interest every 6 months, with the interest from the first half of 
the year added to the principal for computation of interest at the end of the second 
half?" The answer is unanimously that the latter method will give more interest (I 
do not know whether the answer would be as unanimous in less monetarily conscious 
cultures). And so much the better for continuous compounding, we arrive at an intuitive 
understanding of the following nice inequality 

(3) 

(the lost art of inequalities ! ) .  The inequality is clearly true for x � - 1 ,  but also for 
x E (- 1 ,  0) ; the latter can be seen from an inequality e1 ::: et ,  t E (0, 1 )  that may 
be intuitive to some (the money e1 that $ 1 accumulates at the rate of 100% after a 
fractional time t with continuous compounding is greater than the t-"prorated" amount 
et of the final amount e) .  Otherwise, it is justified as in the sequel. 

In fact, it is instrumental to have Jakob Bernoulli 's ( 1 654-1705) inequality set be
forehand: 

( 1  + a )n ::: 1 + na , for every a ::: - 1 ,  and natural n 

( [2] , [3, p .380] ; see also [1 ,  Lectio VII, §XIII, p. 224]) .  Proving this inequality by 
induction is straightforward, but one can resort to comparison of compounding interest 
(once a year, with gain in interest equal a ,  after n years) and simple interest, for an 
equally elegant intuitive proof. The case when a is negative can be interpreted via 
depreciation of property. Incidentally, this inequality can be used in a rigorous proof 
that the sequence for e converges . 

Now we can make a calculus inference: drawing the graphs of ( 1  + x )n and 1 + nx 
we note that the two curves have the point (0, 1) in common, and the Bernoulli in
equality does not allow any more common points to the right of - 1 ,  hence the line is 
the tangent to the curve at this point. The calculus fact we derive is that the slope of 
the tangent at (0, 1 )  to the curve (1 + x )n is n (FIGURE 1b) .  

Using Bernoulli 's inequality, we have (1 + �)n ::: 1 + x,  for every natural n and 
every real x ::: -n.  Thus, passing to the limit we again get our inequality ex ::: 1 + x ,  
for a ll x ,  and we conclude that the slope of the tangent of ex at (0, 1 )  i s  1 = e0 -see the 
graphs in FIGURE 1a. Moreover we can also claim that eh � 1 + h, for small h ,  for in 
this case the time to maturity is as small as we wish and the simple interest calculation 
is close to a continuous one (for this is the meaning of the tangent to ex at (0, 1 ) ) .  
This i s  good to know, for i f  we  are looking at a general tangent to ex at some point 
(x0 , ex0 ) with slope m, then for x close to x0 , we have ex � m (x - x0) + exo (tangent 
approximated by a secant) ; algebra leads to exo e";: ' � m ,  where we set h = x - x0 • 

2The interchangeability of time and interest is a deep secret around which the world revolves and the old 
proverb should actually be rephrased: "Time is interest ! "  
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Figure 1 a  Figure 1 b  

The consequence is that the slope at a point (x , ex ) is same as ex , which is another 
crucial calculus fact, obtained yet again by algebraic reasoning. Maor [14] has more 
information on the events related to the development of the story of e .  

When I have clarified the inequality (3) ,  I ask whether the same inequality would 
hold for other bases greater than 1 .  At this initial stage when students ' grasp of expo
nential functions and calculus is meager, they are tempted to think that the same in
equality holds regardless of the base, especially if they rely on loose graphs to judge (to 
use educational jargon: this is the teacher's  pedagogical content knowledge (PCK)
the teacher's  ability to predict (incorrect) responses of the students) .  The proper in
equality is 

ax :::: X In a + 1 ,  (4) 

which we can establish using once more our fundamental inequality : ax = ex In a ;::: 
1 + x In a .  The tangent at 0 has slope In a .  There is yet another way to look into this 
inequality, namely as dual to (3) .  If f(x )  ;::: g (x) , for invertible functions f, g, then 
their inverses satisfy f- 1 (x) :::: g- 1 (x) ; this is how we obtain ln x :::: x - 1 (x > 0) 
and the consequence is again (4) . 

Our inequality (3) , or (4), can be cast now in a different shape by replacing x by 
xI e - 1 (or by xI a - 1 )  in the inequality ex ;::: 1 + x (respectively ( 4)) and simplifying 
to get 

(5) 

or 

axfa ;::: (x - a)  In a + a ,  for all x ;  (6) 

voila, we have the answer to our question ( 1 ) :  If e :::: a < x, then ::/(i > �. or in 
power notation, ax > xa and similarly, if a < x :::: e, then ::/(i < � (in the former 
case (x - a)  In a + a ;::: x - a + a), or ax < xa , and clearly Vfe is the largest of them 
all . One should take some steps to justify why we make the above substitution and 
this is an opportunity to point out the beauty of how symmetry works : in light of the 
symmetry of a and x in inequality ( 4 ), it pays to look into the case when that symme
try is perfect-when x = a and thus to measure how far we are from that perfection 
for other choices of x and a ;  compare x and a and see how much their quotient dif
fers from 1 .  This is the time to talk also about some mathematical ingenuity-use of 
foresight that requires more than an immediate one-step procedure. 
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Somewhat inconspicuously and, to the student's  untrained eye, unrelated, one might 
ask the following, to set the stage for later use: Given a > 0, find positive numbers y ,  z 
subject to a = yz,  so that P = zY is maximized. 

It is very instructive to show the students how a great mathematician Jacob Steiner 
( 1796-1 863) arrives at the same questions and answers outlined above. In [21] ,  he 
discusses the following problem. 

Steiner's problem on the number e 

For what positive x is the x- th root ofx the greatest? 

Steiner lived considerably later than Newton ( 1 643-1727) and Leibnitz ( 1 646-
17 16) ,  and thus he knew calculus. He begins [21] by noting that a rectangle with pre
scribed circumference has the greatest area if the rectangle is a square-a fact that must 
have been known even to pre-Greek mathematicians. In other words, if x + y = a, then 
the product xy is maximal if and only if x = y .  

Steiner goes on to say that the same i s  true when a fixed quantity a > 0 i s  broken 
up into 3 or n summands :  the product of the summands is the largest, when they are 
all equal . This small generalization is not often seen in textbooks and should be intro
duced, for it has a pedagogical value in that it can be geometrically interpreted, but can 
also be used to illustrate basic notions when discussing partial derivatives and extrema 
in several variables (knowing this geometric-algebraic fact makes the solution via par
tial derivatives not only easy, but explainable) . Again it is important to ask the students 
to work out this expanded problem both geometrically or algebraically (if possible) . 3 

This is a perfect space to take advantage of the harmonic-geometric-arithmetic mean 
inequalities (H .:::: G .:::: A) or to introduce them, if this has not been done before. 

For the more advanced students I have the following dual statements for them to 
understand, prove, elaborate, etc . ;  I use it to expand and relate and talk about the 
notion of duality and what it means in the following particular statements . 

a) If ri are rational numbers and xi > 0 with s 1x 1 + . . .  + SnXn = a ,  for some numbers 
Sj , a ,  then the product P = x;1 • • • • • x�" attains its maximum when 

-- = · · · = -- . 

b) If r; are rational numbers and x; > 0 with P = x? · . . .  · x�" , for some P ,  then the 
sum s1x 1 + . . .  + SnXn = a is minimal when the same equalities hold: 

-- = · · · = --

Claim a) can be proved by first assuming that ri are natural numbers and using 
the geometric-arithmetic inequality applied to the quantities (six; j r;Yi ; the case r; = 
p; j q; is then straightforward. The proof of b) is shorter, for one can refer to the parts 
of the proof for a) . These inequalities can be used extensively to find extremal values 
of various functions, without using calculus techniques .  

Steiner generalizes his first remark further to something related to the above state
ments a) and b) :  to find out when the product P = f1 x; is maximal, if L x; = a ,  for 

3 Here again one can introduce a method not used previously for solving the problem, using the arithmetic
geometric mean inequality, which in turn can be proved geometrically, as well as using calculus methods: Start 
with af n = (XI + 0 0 0 + x,. ) f n  2: � . where the equality, if and only if all the x ' s  are equal, producing 
the maximum of the product. 



2 0 6  MATHEMATICS MAGAZI N E  

a fixed a > 0 (e.g. a = e) . The index set need not be the integers ; this i s  where the 
generalization is not a straightforward one from the square case. The intrinsic value 
of this one page paper without proofs lies in his truly great interpretation, for Steiner 
allows for index sets , other than the positive integers . The solution however is just like 
for the square case: each part of the partition equals e and there are a I e of those parts 
(that is the "number" of the summands is a I e so that in effect the product is the power 
eafe ) .  One first shows that the parts have to be equal : for if there are two unequal parts , 
then reduce the problem to the case of two summands to get a contradiction. Thus if 
we have a >  0 and a =  yz, we can maximize P = zY, or P = za!z. 

Finally, after learning more about derivatives we can learn more about the function 
f(x) = ;JX, x > 0. We find the local extrema, if they exist (whether they do should be 
discussed beforehand, with a more advanced slant) . One may work this out using log
arithmic differentiation: ln f = .!. ln x and df = f � (1 - ln x) dx and one can show X X 
that the maximum occurs for x = e and then {/e � 1 .444 7 .  The graph is now sketched 
more or less routinely, using whatever appropriate techniques one teaches at this time. 

This is done after thorough preparation, without which we would indulge in a 
bare exercise of routine logarithmic differentiation that would not reveal much of the 
essence. Discussions of the kind I presented here should be introduced much sooner 
than the subject of logarithmic differentiation, perhaps sooner than after having taught 
students much calculus at all . Both geometric-algebraic and derivative methods have 
their own merits : geometric-algebraic methods are less routine, and teach students sev
eral things about the exponential function in the process, such as its derivative; plus 
that beautiful picture (Figure 1 a,b) . . . .  It is worth working out examples of this kind 
when geometric methods turn out to be too complicated, and calculus proves invalu
able and superior. This happens often (or sometimes?) in the case of curves of higher 
degrees , outside of the scope of conic sections. Care should be exercised, for non
calculus methods work well with many curves other than conic sections . One can for 
instance find extremal values of a wide array of functions utilizing the inequalities 
we mentioned here; try, for instance, f (x) = x2 (2 - x2)-rewrite it and then use the 
harmonic-geometric-arithmetic mean inequalities . 

Reaumur's honeybee cell problem as solved by Boscovich 

Close the top of a regular hexagonal prism with a roof made of three congruent 
rhombi in such a way as to get a prescribed volume of honey with a minimal 
expenditure of wax. 

The ancient thinkers were considerably puzzled by cell constructions the bees make. 
Pappus of Alexandria (ca. 300 A.D.) attributes the hexagonal shape of the hive-bee 
cells to reasons of economy [16] . Of the three regular polygons that tile the plane, the 
hexagon encloses the largest area for the prescribed perimeter. The density of a regular 
tessellation is defined to be the reciprocal of the ratio of the area of the polygon to the 
area of its inscribed circle. Hilbert and Cohn-Vossen [10] show that the best (largest 
density) plane tessellation is hexagonal, with the density � 0.9069 . Kepler ( 1 57 1-
1 630) elaborates more fully on the shape of bee cells in [11] . 

Reaumur ( 1683-17 57) in his monumental treatise [17] on insects clarifies that such 
an ideal shape of a honeybee cell is indeed rare and that the real bee cell is more 
often a crude approximation of the ideal geometrical shape. These qualifications were 
resounded by Darwin ( 1 809-1 882) who cites additional sources in [6] , testifying to 
economizing patterns of bees in cell making as the means of natural selection (see 
the section "Cell-making instinct of the hive-bee," in chapter VIII (titled "Instinct") 
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of [6])-apparently wax-economizing behavior and the unique shape of bee cells are 
obtained in time through gradual selection in that the bees which economize more, 
are more likely to survive. Close scrutiny of Darwin's related passages show that he is 
wavering on the subject, for instance in not being able to decide whether it is economy 
of wax or labor that matters . It is not fully clear that the bees have the same sense of 
economizing as the humans . I refer to [22] for variations on this optimization problem. 

Reaumur challenged several mathematicians of the time with the problem and a 
German mathematician Koenig gave a calculus solution [12] , which however had some 
mistakes in it (see the sequel) . We give here two solutions by R. Boscovich ( 1 7 1 1-
1787); in reverse order from his own (the solutions are somewhat modified by using 
his ideas from both of the solutions [20] ) .  We will explore the honeybee cell problem 
in more detail elsewhere [8] . 1t is worth mentioning that the cells often "stand" on their 
roofs (the upside-down version of our Figure 2a) and that a honeycomb consists of two 
interlocking layers of adjacent hexagonal cells, their roofs fitting without interstices in 
the middle, their bases roughly forming two parallel surfaces (planes) tessellated by 
hexagons-the easily identifiable part of a honeycomb. 

I give this problem to more advanced students, as a project with several aspects to 
deal with. To begin with, making a drawing using principles of descriptive geometry 
may be very useful and instructive. 

In this idealized honeybee cell, the base is a regular hexagon A B C  DE F (Fig
ure 2a), but the top is not closed by a parallel and congruent regular hexagon 
G HI  K LM as in a regular prism with rectangular sides. Instead the vertical sides 
are congruent trapezoids whose edges form a nonplanar hexagon N H 0 K PM.  

If we  raise a perpendicular Q R from the center Q of  G HI K LM and find the points 
N, 0 ,  P such that Q R = G N = I 0 = L P ,  then, by way of symmetry, the resulting 
rhombi R M N H, R H 0 K, R K PM are congruent. M Q H G is a rhombus (Figure 2b ) ,  
hence the pyramids R M Q H and N M G H are of the same volume, since they have 
equal bases M Q H  and MGH as well as heights R Q  and NG respectively. The same 
reasoning applies to other rhombi. Thus, no matter what shape the rhombi are, all the 
cells will have the same volume as if the top were closed by the regular hexagon. We 
now need to minimize the amount of wax used to build such a cell. 

I L K 

0 
N 

M I 

E D 

c 
A B G H 

Figure 2a Figure 2b 
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Boscovich's second solution The variable part of the total area is 

Area = 6 Area(AN H B) + 3 Area(RMN H) . 

If we denote the lengths AB  = GH = a, AG = b, GN = x ,  then Area(AN H B) = 
ab - ax /2 , and 

Area(RMN H) = M H . SN = a../3JGN2 + SG2 = a.J3Jx2 + a2j4 .  

Thus we need to minimize the function A (x) = 6ab - 3ax + (3.J3a/2)J4x2 + a2 
and the minimum is easily found (after differentiation) to occur for 

(thus, we need to assume that a < 2.Jib; in reality, bees make deep cells ,  hence this 
condition is satisfied) . 

Unknown to Boscovich, Newton's student Maclaurin had a very similar calculus 
solution [13] simultaneously, or before Boscovich. It is a good challenge to arrive at 
the minimizing quantities using inequalities , not derivatives. What however escaped 
both Boscovich and Maclaurin4 is the following algebraic way to minimize the above 
quantity : In fact we need to minimize C(x)  = .J3Jx2 + a2 /4 - x .  

If we denote y2 = x2 + a2 /4, then this i s  the constraint for minimizing C (x ,  y )  = 
.J3y - x (which is the same as minimizing C2) .  Although, x and y are not perfectly 
symmetrical participants, we can emphasize their dual roles by introducing D (x , y) = 
.J3x - y (by now, duality would have been our old friend) . We have now easily 
C2 - D2 = 2(y2 - x2) = a2 /2 and thus C2 = a2 /2 + D2 ; hence, C is minimized for 
D = 0 and that leads to ( * ) .  

Because of  equality (* )  we get RN2 = (2SN)2 = 12x2 = (3/2)a2 , and since 
M H2 = 3a2 , we get the equality 

which determines the shape of the rhombi . The angles of the rhombi are easily de
termined: tan LRNH = SH/SN = MH/RN = .,fi, thus the angles are LMNH � 

109°28' 16 . 39" and LN H R � 70° 3 1 '43 . 6 1 " . 5 The volume is V = (3.J3/2)a2b, whereas 
the minimal (closed) cell area is Area = (3 ( .J3 + .,fi) j2)a2 + 6ab .  

Here Boscovich found errors in  computations (or measurements, which Maraldi 
claimed to have performed) of his predecessors who worked on the same problem. In 
addition, Reaumur claimed that Koenig proved that by making such a pyramidal roof, 
rather than the flat one, the bees save in wax by as much as the amount needed to 
build the flat roof. Boscovich said that this was wrong and it is a good exercise for the 
students to find the correct "savings." 

We now show an interesting fact, namely that the rhombic angles are equal to the 
corresponding non-right angles of the side trapezoids. Using (**) and the double an
gle formula for tan we get tan LM N H = -2.Ji = - tan LRH N. On the other hand, 

4But then, it may not have escaped them-they may have wanted to prove the point of calculus' usefulness. 
Maclaurin was a natural preacher in the new discipline of calculus and Boscovich was showing that he had 
adopted the new invention. Unlike most commentators, I think that Newton (and hence his students) was not 
comfortable with geometry and this ,  among other factors, may have facilitated a quest for something else. On 
the other hand, Boscovich adored the older geometric method and it resulted in a number of ingenious geometric 
solutions to various problems, while he at the same time may have had somewhat shorter calculus solutions.  

5 Figure 2a is a cell view that distorts the angles ;  this view was chosen to reduce the "clutter in the attic." 
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tan LN H B = ajx = 2..Ji, by (*), hence LRH N = LN H B ;  thus all the other corre
sponding angles are equal. 

Boscovich however goes further to show something no one involved noticed, 
namely that the spatial angles between the faces are all equal (except the right angles 
at the base), and equal to 1 20° : We have just established that all the plane angles at 
vertex N are equal, thus the angles formed by the respective planes must be equal too. 
The angle between the planes FANM and NABH is the same as L FAB = 120° . 
Now the same arguments may be repeated for the vertices 0 ,  P ,  R,  in place of N, 
since the trihedra at those vertices are congruent to the one at N .  The same reasoning 
(and the same angles) applies to another group of vertices H, K, M that have four 
quadrilaterals abutting at them. 

This wonderful reasoning is then carried over to the construction of honeycomb. 
Boscovich thinks that bees have special instruments that they can use only in such a 
way as to produce the prescribed angles to connect two planes .  These instruments are 
never so perfect, just like human limbs; thus the cells will deviate from the perfect 
form. Let us add that in our industrial age, the cells are often started (by a manufac
turer) in a form of a planar network of perfect hexagons and then offered to bees to 
finish the construction. Boscovich is nonetheless awed by the intention of the Divine 
Creator of nature who gave these little animals the tools and instinct that dictate the 
shape of the cells with the greatest saving of wax. 

Boscovich's first solution Let us look now into Boscovich' s  geometric solution (in 
fact his first solution) to the problem of the shape of the honeybee cell. He is pushing 
geometric considerations to their limits, and literally at that, for he utilizes limiting 
processes, without explicitly using our modem terminology in this respect. In this 
solution he gets the rhombi shape relation ( ** ) ,  which can be shown to be equivalent 
to ( * ), obtained earlier via derivatives. He says that the minimizing position M N H R 
will be such that any roof plate passing through M H (say M N' H R', Figure 3a), and 
close enough to the minimizing position, will assume equal areas in moving from a 
position just before, to some position just after the minimizing position. 

G s 

N' 

F N 
c 

A B N' 

Figure 3a Figure 3b 
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The extra area that M N' H R '  has over M N H R equals the sum of the areas of trian
gles N H N' and N M N'-by which the areas of AN H B and AN M F were reduced: 

( 1 )  Area(M N' H R') - Area(M N H R) = Area(N H N') + Area(N M N') . 

The diagonals of the rhombus M N H R are perpendicular and bisect each other and we 
can see then that G Q  and RN pass through the mid-point S. Using the data we have 
and Figure 2a,b we get 

(2) GH = 2GS 

and 

(3) GH2 : GS2 : SH2 = 4 :  1 : 3 .  

Within the plane N SN', use an arc with center S and radius SN to get a point T on 
SN' . We then have 

(4) Area(MN'HR') - Area(MNHR) = MH · N'T 

and 

(5) Area(NHN') + Area(NMN') = NN' · GH, 

as  triangles with the same base NN' and altitude GH.  From ( 1 ), (4), and (5 )  we get 
MH · N'T = NN' · GH, or NN' : N'T = MH : GH,  and by (2) , we have 

(6) NN' : N'T = SH : SG. 

Here is where Boscovich applies limiting reasoning (N' is close to N): The triangle 
NT N' can be considered to be right, with the right angle at T (Figure 3b ), and angles 
G N S and N N' S approximately equal, and we can consider the triangles S N G and 
NTN' to be similar, thus we have a relation NN' : N'T = SN : NG so, by (6), we 
have 

(7) SN : NG = SH : SG;  hence, by (3) , SN2 : NG2 = 3 :  1 ,  

and then 

(8) SG2 : NG2 = 2 :  1 ,  since SG2 = SN2 - NG2 . 
From (7) and (8) we now have 2SN2 = SH2 and, since NS = ( 1 /2)NR,  SH = 
( 1 /2)M H,  we get 2N R2 = M H2 and this is the relation (**) .  We can now recon
struct the rest as in the other proof. 

Boscovich prefers this geometric solution which appears to him as simpler and 
more elegant, as it often happens ("Et quidem saepe accidit, potissium in hujusmondi 
problematis admodum simplicibus, ut Geometria simpliciores, & elegantiores determi
nationes exhibeat, quam calculus. ") . He also rightly says that the geometric approach 
gets some relationships straightforwardly, unlike the solution with the derivative. Go
ing back to my introductory remarks, this inevitably happens when we apply unifying 
tools (such as calculus and category theory)-they give us automatic snappy solutions, 
but a more detailed and perhaps a deeper insight is lost, while we gain in a global pic
ture. In any case, both of these solutions are a good example of a happy mixture of 
geometric and analytic methods working together. They both emulate this mix, one 
using Newton's (derivatives), another Leibnitz 's  (infinitesimals) flavor of differential 
calculus .  Most often I present the method that uses derivatives to minimize, however 
with a more refined audience I inevitably reach for the purely geometric option. 

The honeycomb discussion I touched upon here contains more mathematics than 
meets the eye, and is far from exhausted; I will devote a more thorough study to it in 
the future [8] . 
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Consider a two-player competitive game involving the rolling of six-sided dice. 
The object is to see which player rolls a larger number. However, these dice are not the 
usual type with sides numbered 1 through 6. Rather, this game is played with a set of 
four dice designed by Bradley Efron, a statistician at Stanford University. These four 
dice are "unfolded" in Figure 1 . 

A B C D 

- - -

Figure 1 Efron d ice 

What is peculiar about these dice is that they are probabilistically non-transitive [1, 
3] . This is due to the fact that die A is twice as likely to beat die B, die B is twice as 
likely to beat die C, die C is twice as likely to beat die D, and, paradoxically, die D is 
twice as likely to beat die A! Thus, in a "gentleman's game," as Ross Honsberger calls 
it [2] , we graciously let our opponent choose a die to roll , so that we then can pick a 
die that beats it two times out of three. Clearly, a "gentleman's game" is not attractive 
for the person who chooses first. 

Suppose now, instead, that the players, each equipped with a personal set of four 
Efron dice, simultaneously choose a die to roll without revealing their selections until 
the dice are rolled. In repeated plays of this game, a player's choice of a die to roll 
is not so clear. What is clear is that a deterministic strategy, that is, one that involves 
a completely predictable sequence such as always choosing a particular die, can be 
soundly beaten. Thus, players must keep their opponents guessing by choosing a mixed 
strategy that randomly picks among the four dice. 

One might suspect that an optimal strategy would be to randomly choose among 
the four dice with equal (uniform) probability. After all, this type of strategy is optimal 
for the classic non-transitive game of rock-scissors-paper (rock beats scissors, scissors 
beats paper, paper beats rock) [6] . However, this strategy is not optimal for the Efron 
dice game. 

2 1 2  
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To see why, we first consider the probability that each die will beat any other on a 
play of this game. In doing so, we create a matrix of probabilities, where each row of 
the matrix corresponds to the choice of a die by the the row player, let 's call her Rose, 
and each column corresponds to a choice by the column player, Colin. Each probability 
then expresses the probability that Rose beats Colin for that particular combination of 
dice. It is not terribly difficult to show that this matrix is given by 

Rose A 
B 
c 
D 

A 
[ 1 /2 

1/3  
5/9 
2/3 

Colin 
B C 

2/3 4/9 
1 /2 2/3 
1 /3 1 /2 
1 /2 1 /3 

D 
1 /3 ] 
1 /2 
2/3 
1 /2 

Since each probability in this "payoff" matrix expresses the probability that Rose beats 
Colin, which is one less the probability that Colin beats Rose, this constitutes a two
person, one-sum game. By symmetry of their possible die choices , both Rose and 
Colin are equally likely to win this game. Thus, the game is fair, and its value is the 
probability that Rose wins, namely 1 /2.  

Note that when both Rose and Colin roll die B ,  a tie value results with no winner. 
We have chosen to arbitrarily assign a probability value of 1 /2 in this situation (the 
(B , B) diagonal element in the matrix), with the interpretation that the players will 
each choose a (possibly) new die to roll, and the probability that Rose will win on this 
new roll (in a fair game) is 1 /2. 

We can find the optimal strategy for either player (by symmetry their optimal strate
gies are the same) in the same way as for the more common zero-sum games by trans
forming the game into a linear programming problem [6] . Let x denote the strategy 
vector for the row player Rose. This is a probability vector, where the i th element, xi , 
denotes the probability that Rose will choose to roll the die corresponding to row i .  
Multiplying this vector by the jth column of the payoff matrix gives the expected prob
ability of Rose winning when Colin chooses to roll the die corresponding to column 
j .  Classic game theorist that she is, Rose employs a maximin criterion that attempts to 
maximize the minimum (worst-case) expected probability of winning. She therefore 
seeks to maximize the lower bound on her expected probability of winning over all 
possible actions from Colin via the linear program 

subject to 

Maximize v ,  

1 1 5 2 
-XA + -X B + -Xc + -X D > V 
2 3 9 3 -

2 1 1 1 
-xA + -xs + -xc + -xv > v 
3 2 3 2 -

4 2 1 1 
-XA + -Xs + -Xc + -Xv > V 
9 3 2 3 -

1 1 2 1 
-xA + -xs + -xc + -xv > v 
3 2 3 2 -

XA + Xs + Xc + Xv = 1 

and xi ::=:: 0, for i = A ,  B ,  C, D.  
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Using the substitution x v  = 1 - XA - x 8  - xc , this problem reduces to 

subject to 

Maximize v ,  

1 1 1 2 
- -XA - -XB - -Xc + - > V 

6 3 9 3 -
1 1 1 
-XA - -Xc + - > V 6 6 2 -
1 1 1 1 
-XA + -XB + -Xc + - > V 
9 3 6 3 -
1 1 1 

- -XA + -Xc + - > V 
6 6 2 -

XA + XB + Xc ::':: 1 

and x; � 0, for i = A ,  B ,  C .  
Since, by  symmetry, the value of this fair game i s  v*  = 1 /2, the second and fourth 

constraints at optimality imply that ± � (x� - x�) � 0, i .e . ,  x� = x� . Hence, Rose 
should choose dice A and C with equal probability. This fact reduces the remaining 
constraints to 

5x� + 6x; = 3 
2x� + x; :::: 1 ,  

where the equation follows from combining the first and third original constraints. 
These remaining constraints then ' imply the existence of multiple optimal solutions 
given by 

This optimal solution set is plotted (as a function of the first row probability x�) in 
FIGURE 2. 

It is a bit surprising that among the infinitely many optimal solutions, the uniform 
solution x; = 1 /4, i = A ,  . . .  , D ,  is not among them. A fairly close alternative is the 
solution x* = (6/24, 7/24, 6/24, 5/24) . The most interesting solutions are the bound
ary solutions x* = (0, 1 /2, 0, 1 /2) and x* = (3/7, 1 /7 ,  3/7, 0) . The first of these so
lutions suggests that it is optimal to play by throwing only dice B and D with equal 
likelihood, even if your opponent chooses to play optimally with all four dice. The 
other boundary solution suggests playing with only the first three dice, leaving out 
die D. 

Two dice Now, consider the case where each player rolls two Efron dice, with the 
goal of rolling the highest total . If a player is allowed to roll the same die twice, the 
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Figure 2 Opti ma l  strategy so l ut ions 

probability matrix becomes 

AA AB AC AD BB BC BD cc CD 
AA 1 /2 1 6/27 4/9 1 0/27 4/9 8/27 2/5 1 6/49 14/27 
AB 1 1 /27 1 /2 1 6/27 1 /2 2/3 4/9 1/3  8/27 2/5 
AC 5/9 1 1 /27 1 /2 17/27 1 /2 1 6/27 1 /2 4/9 1 0/27 
AD 17/27 1 /2 1 0/27 1 /2 1 /3 2/5 7/ 1 2  14/27 4/9 
BB 5/9 1/3  1 /2 2/3 1 /2 2/3 1 /2 4/9 1/3  
BC 1 9/27 5/9 1 1 /27 3/5 1/3  1 /2 2/3 1 6/27 1 /2 
BD 3/5 2/3 1 /2 5/ 1 2  1 /2 1/3  1 /2 2/5 7/ 12  
cc 33/49 1 9/27 5/9 1 3/27 5/9 1 1 /27 3/5 1 /2 17/27 
CD 1 3/27 3/5 1 7/27 5/9 2/3 1 /2 5/ 12  1 0/27 1 /2 
DD 5/9 5/ 1 2  1 /2 5/8 1 /2 7/ 12  1 /2 4/9 3/8 

2 1 5  

DD 
4/9 
7/ 1 2  
1 /2 
3/8 
1 /2 

5/ 1 2  
1 /2 
5/9 
5/8 
1 /2 

Note that when both players choose BB a tie always results . Again, we assign this a 
value of 1 /2 as before. In other cases where a tie may result, we have assumed that the 
players roll these same dice again until a victor emerges . 

Choices AA and BD would never be used since they are dominated by choice CC. 
Also, choice AB is dominated by CD, and choice AD is dominated by BC. Therefore, 
we can remove these four dominated strategies from consideration. Solving the re
maining matrix game, we find the unique optimal solution x�8 = 5/ 17 ,  x�c = 3/ 17 ,  
and x�c = 9 I 17 .  Thus, the optimal mixed strategy mixes between dice B and C and 
never uses dice A and D. Most of the time the player uses just one die (either die B 
or C) and rolls it twice. 

If we disallow the option of rolling a single die twice, and require each player to roll 
two different Efron dice, we simply further eliminate choices BB,  CC, and DD. This 
leaves only choices AC, BC, and CD to choose from. Thus, die C is always used and 
the choice becomes one of choosing one of the remaining dice A, B, or D. Choosing 
one of these dice to roll is equivalent to the original probability matrix with choice C 
removed, viz. 
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Colin 
A B D 

Rose A 

[ 
1 /2 2/3 1 /3 

] B 1 /3 1 /2 1 /2 
D 2/3 1 /2 1 /2 

Clearly, option B is dominated by option D. Removing option B yields a 2 x 2 matrix 
between options A and D, in which A is dominated by D as well. Thus, option D con
stitutes a dominant strategy or saddle point for this fair game. Hence, when choosing 
two unique dice from the set of four Efron dice to roll, each player should choose dice 
C and D. 
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Probabilities of Consecutive Integers in Lotto 

S T A N L E Y P. G U D D E R  
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Denver, CO 80208 

Introduction In a typical lotto game (such as the Colorado Lottery [3] ) ,  ping-pong 
balls numbered 1 through 42 are placed in a clear plastic drum and thoroughly mixed. 
Six balls are then randomly selected; if your previously chosen six numbers agree 
with those on the selected balls (in any order) then you win the j ackpot. The lottery is 
repeated twice a week, and the payoff depends on how many times it is played until 
there is a winner. If more than one player wins , the proceeds (millions of dollars) are 
divided among the winners . The chance of winning with a single pick is, of course, 

1/ ( �) = 1 /5245786, 

so such a win is quite unlikely. 
A sample of winning combinations shows that, very frequently, there are at least two 

consecutive numbers among the six . For example, on December 30, 1 998, the winning 
set in the Colorado Lottery was {2, 3 ,  14 ,  1 7 ,  19 ,  22}, which contains the consecu
tive numbers 2 and 3. To satisfy our curiosity we examined the 3 12 different winning 
combinations over the years 1 996-1998 (all data were gathered from the Colorado 
Lottery 's website [3] ) and we found that about 53% ( 1 64 out of 3 12) of the time this 
combination contains at least two consecutive numbers . Considering the spread be
tween 1 and 42 it was surprising to us that this percentage was so high. Also, these 
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data showed that about 39% of the time ( 1 2 1  times) there were exactly two consec
utive numbers . This means that in about 14% of the cases there were more than two 
consecutive numbers. For example, there could be two separated pairs of consecutive 
numbers such as { 1 3 ,  23 , 24, 27, 28 ,  39}  (December 7, 1 996) or a triple of consecutive 
numbers, such as { 10, 1 1 ,  12 ,  19 ,  23 , 4 1 }  (January 10, 1 998) .  

Since not all lotteries have the same rules ,  we frame computations in the general 
setting of an (n , m )-lotto game, where the winning set is an m-element subset of 
{ 1 ,  . . . , n } .  First we compute probabilities of consecutive integers theoretically, us
ing a simple formula (Proposition 1), from which related results on the clustering of 
numbers on a winning ticket are easily derived. Then we observe that 6 is the small
est m for which the probability of at least two consecutive integers in a winning set 
in (42 , m) -lotto exceeds 1 /2 ;  thus m = 6 is the 1 /2-threshold for n = 42. Examining 
threshold values for other ns suggests that they grow with order Jn; standard approxi
mations from calculus let us conjecture a closed form. In Theorem 5 we show that this 
conjecture is "almost correct." 

Our work is similar in spirit to a nice extension of the birthday problem by Abram
son and Moser [1] , who compute the probability that no two birthdays among n peo
ple lie within k days of each other. The interesting book by Henze and Riedwyl [5] 
presents strategies for avoiding sharing prizes if you win the lottery, and much statis
tical analysis of real lotto data. Our work also overlaps that of Henze [4] , who studies 
the distribution of spaces between numbers on winning lotto tickets .  

Lotto probabilities We define an (n , m)-lotto game as one in which the winning set 
is an m-element subset of { 1 ,  . . .  , n } .  An m-element set A in { 1 ,  . . .  , n} is called an 
m-set and when we write A =  {a1 ,  a2 , . . .  , am } ,  we always assume that a1 < a2 < · · · 
< am . If A contains at least two (respectively no) consecutive integers, then A is called 
a consecutive (respectively nonconsecutive) m-set. Let K (n ,  m) and N(n,  m) denote 
the number of consecutive and nonconsecutive m-sets . The probability P (n ,  m) that a 
randomly chosen m-set is consecutive is 

P (n , m) = K (n , m)  I(;) . 
For example, in the Colorado lotto game, a (42, �) -lotto, we want to find 

P (42, 6) = K (42, 6) I C�) ; 
thus ,  finding P (n ,  m)  amounts to finding K (n ,  m ) .  This is not as simple as it may 
look and we invite readers to try their hands at this before proceeding to the solution. 
The result (Proposition 1 )  is known (see, for instance, [2, pp. 30-1 ]  or [6, Example 
4c, pp. 7-8]) .  It is also the starting point for Henze [4] , who studies spacing in lotto 
combinations .  

As often happens in such combinatorial problems, it is easier to find N(n ,  m) and 
then use the relation K (n ,  m) = (�)  - N(n ,  m ) .  Of course, if m > (n + 1 ) /2 then 
N (n ,  m)  = 0, so we assume henceforth that m ::::: (n + 1 ) /2.  The cases m = 0 and 
m = 1 are also trivial, so we assume that m :::: 2. Finally, we assume that ( 'j )  = 0 
when j > r or r < 0. 

PROPOSITION 1 .  (n - m +  1) 
N(n , m)  = m 

. 
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Proof We display a bijection between the set of m-sets in { 1 , . . .  , n - m + 1 } , 
which has cardinality (n-,�+1 ) ,  and the set of nonconsecutive m-sets in { 1 , . . .  , n } .  
Indeed, i f  {a 1 , a2 , . . .  , a111 } i s  an m-set in  { 1 , . . .  , n - m + 1 } ,  then {a1 , a2 + 1 ,  . . .  , 
am + m - 1 }  is a nonconsecutive m-set in { 1 ,  . . .  , n } ;  this correspondence is clearly 
bijective. • 

By Proposition 1 ,  

( 1 )  

In (42 , 6)-lotto, for example, we  have 

P (42. 6) = 1 _ e:) 1 ( �) � 0.557 .  

The idea of the preceding proof can be generalized to gaps of two or more. Let 
us say that an m-set A in { 1 , . . .  , n} has gaps of at least k if aH1 - aj 2: k + 1 for 
j = 1 ,  . . .  , m - 1 .  Then the proof of Proposition 1 (or see [ 4] ) can be generalized 
easily to show the following result: 

PROPOSITION 2 .  The number of m-sets in { 1 ,  . . .  , n }  in which there is a gap of at 
least k between every pair of integers is 

Proposition 1 provides a starting point for computing probabilities of events natu
rally associated with clustering of winning numbers in lotto . Let us say that an m-set 
A in { 1 , . . .  , n} has exactly two consecutive integers if for some k < m,  ak + 1 = ak+ l 
and aj + 1 < aH1 for j =!= k. The next result lets us count these sets . 

PROPOSITION 3 .  The number of m-sets in { 1 ,  . . .  , n }  with exactly two consecutive 
integers is 

Proof Each nonconsecutive (m - 1 ) -set A =  {a1 , a2 , . . .  , am-d in { 1 ,  . . .  , n - 1 }  
generates the following m - 1 m-sets , each with exactly two consecutive integers : 

{a, , a1+1 , a2 + 1 ,  . . . , am- i + 1 }  

{a, , a2 , a2+1 , a3 + 1 ,  . . .  , am- i + 1 }  

Observe that each m-set with exactly two consecutive integers can be written in pre
cisely one of these ways. Since each A generates m - 1 of these sets, their total number 
is 

(m - 1 )N(n - 1 ,  m - 1 )  = (m - 1 )  en - 1 ) : c::: 
1
- 1) + 1) 

= (m - 1)  (n : � i 1) . • 
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In (42 , 6)-lotto, for example, the probability of exactly two consecutive integers in 
the winning lotto combination is 

(In the Colorado lottery, this phenomenon occurred 12 1  out of 3 12 times, for a fre
quency of 0 .388 . )  

The definition and the proposition extend easily to m-sets in { 1 ,  . . .  , n }  with exactly 
r consecutive integers . We invite the reader to prove the next result by mimicking the 
proof of Proposition 3 .  

PROPOSITION 4 .  
(a) The number ofm-sets in { 1 ,  . . .  , n }  with exactly r consecutive integers is (n - m + 1) 

(m - r + 1 )  m - r + 1 · 

(b) The number ofm-sets in { 1 ,  . . .  , n }  with exactly 2 separated pairs of consecutive 
integers is 

In (42, 6)-lotto, for example, the probability of exactly 3 consecutive integers in 
the winning set is 4 (�7) 1 (�2) � 0.050, which agrees well with the observed Colorado 
frequency of 0.055 ( 1 7  out of 3 1 2) .  The probability of exactly two separated pairs 
is (i) (�7) I (�2) � 0.076, while the observed frequency was 0.058 ( 1 8  out of 3 1 2) .  
We urge readers to compute these and other probabilities (e .g . ,  3 separated pairs, a 
separated triple and a pair, 4 consecutive integers, etc . )  for their own lotteries, and to 
compare predictions with actual data. 

Threshold numbers The birthday problem (see, e .g . ,  [6, Example 5j , pp. 40-1 ] )  
asks how many people are necessary to  have a probability of  at least 1 12 of two match
ing birthdays. The same kind of analysis can be applied to a general (n , m)-lotto game, 
where we seek, for fixed n ,  the smallest m which gives the probability of more than 1 12 
that the winning set is consecutive. Perhaps surprisingly, there is an "almost closed" 
form for m in terms of n that can be derived using only calculus . 

We saw above that the probability of at least two consecutive integers in (42 , 6) 
lotto exceeds 1 12. What if only 5 numbers were selected? From ( 1 )  we see that 
P (42 , 5) = 1 - G8) 1 (�2) � 0.41 < 1 12, so we call 6 the 1 12-threshold number for 
n = 42. In general, we' ll call the smallest m such that P (n ,  m) > 1 12 the threshold 
number for n ;  we denote it by T (n) .  The following table shows several threshold 
numbers : 

TAB LE 1 :  Th res h o l d  N u m bers 

n 5 
T (n) 3 

10  12  42 49 100 1 1 6 1000 104 
3 4 6 7 9 10  27 84 

105 
264 

Notice that T (n) appears to have order Jn. But is there a closed-form expression 
for T (n) ?  We shall now try to conjecture one. 
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We seek the smallest m such that K(n ,  m ) /  (:,� ) > 1 /2 ; by ( 1 ) ,  this i s  equivalent to 

(2) 

Writing out the binomial coefficients using factorials, we see that (2) is equivalent to 

n - m  
n 

n - m - 1 
n - 1 

n - m - (m - 2) 

n - (m - 2) 

1 
< - . 

2 
(3) 

The left side of (3) has m - 1 factors, which decrease from left to right. Thus (3) 
certainly holds if 

which is equivalent to 

n - m 
< 2- 1/(m- 1 ) - ' n 

n (2 1/ (m- 1 ) - 1 ) .:S m 21/(m- l ) . 

Since 21/ (m- 1 ) � 1 + ��1 ,  we can rewrite (5)" approximately as 

-- ln 2 < m 1 + -- . n ( ln 2 ) 
m - 1 - m - 1 

(4) 

(5) 

(6) 

From (6) we have n ln 2 .:::: m2 - m( l  - ln 2) .:::: m2 . Hence, Jn ln 2 .:::: m and since m 
is an integer we have 1 J n ln 2 l .:::: m,  where r · l denotes the ceiling function. 

Based on the preceding heuristic argument, we might conjecture that the smallest 
possible integer m is S(n) := I Jn ln 2 l This conjecture is indeed correct for many 
values of n .  For example, it works for all n in Table 1 other than n = 5 ,  12 ,  49 , 1 1 6. 
For these values, we have 

S(5) = 2 < 3 = T (5) ; S ( 12) = 3 < 4 = T( 1 2) ; 
S (49) = 6 < 7 = T (49) ; S ( 1 1 6) = 9 < 10  = T ( 1 1 6) .  

Thus it seems that our original conjecture i s  off by at most 1 .  In Theorem 5 we state 
and prove our corrected conjecture: 

THEOREM 5 .  The thresholdfunction T (n) satisfies 

J r (n) - I  Jn ln 2l l .:::: 1 .  

Remark. Theorem 5 can be sharpened to show that T (n) is either I Jn ln 2 l or 
I Jn ln 2 l + 1 .  We omit the proof, which is considerably more detailed than that fol
lowing. 

Proof Let a = � + J � + n ln 2. (It is convenient to consider a because it is close 
to J n ln 2 and it satisfies the simple quadratic equation a2 - a = n ln 2.) In particular, 

ln 2 a = 
a - 1 n 

We first show that ( 4) holds for m = I a l Using (7), we get 

(7) 
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n : a ::::: r1/(a- 1) {::::::} 2 1/(a- 1 ) ( 1 - �) ::::: 1 {::::::} exp (a

l�2

1 ) ( 1 - �) ::::: 1 

{::::::} exp (�) ( 1 - �) ::::: 1 .  

To see that the last inequality holds, let f (x) = ex ( 1  - x) . Then f (0) = 1 and f '  (x) < 
0 if x > 0. Since 0 < � < 1 ,  we have f ( � )  < f (O) = 1 ,  so 

n - a __ < 2-1 / (a- 1) , (8) 
n 

as claimed. Letting m = lal > a , we conclude from (8) that (4) holds. Hence (2) 
holds, so 

Having obtained an upper bound for T (n) , we next derive a lower bound. Letting 

b = a - 1 = - � + J! + n ln 2, we have b2 + b = n ln 2, so 

ln 2 
b - 1 

b(b + 1 )  

n (b - 1 )  · 
(9) 

Using (9), the estimate ex > 1 + x, and the fact that b2 < n + 1, we find after calcula
tion that 

which implies 

exp .(�) ( 1 -
b ) > 1 ,  

b - 1  n - b + 2  

n - 2b + 2 
2- 1/(h- 1 ) ---- > . 

n - b + 2  
( 1 0) 

It follows from ( 1 0) that if m = LbJ < b (where L · J denotes the floor function) , then 

n - 2m + 2 
> 2- 1/ (m- 1 ) 

n - m + 2 

Now the left side of ( 1 1 )  is the smallest factor on the left side of (3) ,  so 

Thus l- � + J! + n ln 2 J < T (n) ,  and we conclude that 

( 1 1 )  

r �� + j� + n ln 2 l :5 T (n) :5 r � + j� + n ln 2l ( 1 2) 

Now a routine calculation shows that 

Since the upper and lower bounds differ by 1 ,  the theorem follows from ( 12) and ( 1 3) . 
• 
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We could also consider threshold numbers Trx(n) for probabilities a other than 1 /2.  

Our first conjecture would then be replaced by the guess that Ta (n) � Jn In C�J . For 

example, if a = 1 - e - 1 � 0.632 1 ,  then our conjecture would have the simple form 
Ta (n) = I Jnl 

Our proof of Theorem 5 is easy to modify to show that when 0 < a < 1 - e - 1 , then 

( 14) 

Our numerical experiments suggest that ( 14) holds (for sufficiently large n) also when 
1 - e - 1 ::::: a < 1 ,  but we do not yet have a proof. 

Acknowledgment. The authors thank the referees for helpful advice and for pointing out the references [1] 
and [5] . The latter reference led us to [4] . 
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Pythagorean Boxes 

R A Y M O N D  A. B E A U  R E G A R D  
E .  R.  S U  R Y A N A R A Y A N 

U n ivers ity of Rhode I s land 
K ingston,  R l  02 8 8 1  

Introduction A Pythagorean rectangle is one with integer sides and integer diago
nals . Much has been written about these in the context of Pythagorean triangles which 
are represented by Pythagorean Triples (PTs), that is, integer triples (a ,  b, c) satisfying 
a2 + b2 = c2 (See, for instance [12] ) .  A Pythagorean box is a box whose edges and 
inside diagonals are integers . These are represented by ordered quadruples (x , y ,  z ,  w) 
whose components are integers satisfying the equation 

( 1 )  

where w > 0. We refer to such quadruples as PBs. 
Our purpose is to look at the geometric and algebraic properties of PBs with one eye 

on the many nice properties that PTs exhibit. For example, every PB corresponds to the 
rational point (x j w ,  yjw , z/w) on the unit sphere; this is analogous to the correspon
dence of PTs with rational points on the unit circle . It is well known that every pair of 
positive integers n ,  m determines a PT, namely (n2 - m2 , 2nm , n2 + m2) . By analogy 
we show how every pair of positive rationals determines a PB . The set of PTs can be 
made into a group in at least two different ways [2, 4] . We show how the set of PBs is 
a group extension of each of these. In fact, the set of PBs and the set of PTs are made 
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into fields, the former an extension of the latter of degree 2 .  We analyze Pythagorean 
boxes with a square base in terms of a Pell equation, and close by discussing perfect 
Pythagorean boxes . 

We will find it convenient to allow x ,  y ,  and z to have negative values (thus including 
each octant of the unit sphere). We allow degeneracy, letting x, y, or z be 0 so as to 
include PTs among the PBs .  For reasons that will become clear shortly y and z are not 
allowed to be simultaneously zero; thus y2 + z2 =f. 0. 

New PBs from old Motivated by the ways in which PTs can be composed to produce 
new ones, we define the following operation on PBs :  

(xi , Yt . Z t , W t ) * (x2 , Y2 . Z2 , w2) = (2) 

(x i w2 + WtX2 , Y t Z2 + Z t Y2 · Z t Z2 - Yt Y2 · X tX2 + Wt w2) .  

It i s  not difficult to show that the quadruple defined in (2) i s  a PB . One may use 
Cramer's  Rule, or argue directly, to see that the two (new) middle components are 
not simultaneously zero. To illustrate the binary operation (2), we have (3 , 2, 6, 7) * 
(3 , 6, 22, 23) = (90, 80, 1 20, 170) . Thus, a product of primitive PBs (where the com
ponents are relatively prime) can be far from primitive. 

This generalizes some . previously known operations on PTs . When x = 0, equa
tion ( 1 )  defines the PT (y , z ,  w) which can be associated with the rational point 
(y I w ,  z/ w) on the unit circle. In this case, the operation in (2) is similar to the 
one described by Eckert [4] (where additive notation is used) . On the other hand, 
if y = 0, then z =I= 0, and ( 1 )  defines the PT (x , z ,  w) associated with the rational 
point (wjz ,  x jz) on the unit hyperbola (w/z)2 - (x/z)2 = 1 .  In this case, equation (2) 
reduces to the binary operation described by the authors in [2] . 

The operation above might seem more natural if we associate the PB defined by ( 1 )  
with the matrix 

[ W X 
X W 
0 0 
0 0 

0 0 ] 
0 0 
z y 

-y z 

(3) 

having integer entries and equal (2 x 2 main-diagonal) block determinants . Then our 
rule of composition (2) corresponds to matrix multiplication. Since the set of such 
matrices is a multiplicative semigroup, the set 

B = {B : B = (x , y ,  z. w) satisfies ( 1 ) , w > 0, y2 + z2 =f. 0} 

of PBs is also a semigroup. Notice that the identity matrix corresponds to the PB 
(0, 0 ,  1 ,  1) which is then the identity element for B. 

The determinant of a matrix like (3) is nonzero and hence it is invertible; its inverse 
corresponds to the quadruple 

1 

(y2 + z2) 
(-x , - y ,  z .  w) , (4) 

which represents a rational box. We define the related PB , B# = ( -x , - y ,  z ,  w) to be 
the quasi-inverse of B .  Note that B * B# = (0, 0, y2 + z2 , y2 + z2) .  Quasi-inverses are 
useful in establishing that the semigroup B is cancellative. 

Let us define a relation ""' on B by (xi , Yt , Z 1 ,  Wt )  ""' (x2 . Y2 . z2 . w2) if there are 
positive integers n and m such that (nx1 , ny1 , nz 1 ,  n w 1 )  = (mx2 , my2 , mz2 , m w2) .  It 
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i s  not difficult to show that "' i s  an equivalence relation; it has the effect of identifying 
all PBs of the form (nx , ny , nz ,  n w ) ,  as n varies over the positive integers . We write 
[x , y ,  z ,  w ] for the equivalence class containing (x , y ,  z ,  w) ,  and use the symbol R for 
the set of these equivalence classes. In fact, "' is a congruence on B in the sense that 
if A t  "' A2 and Bt "' B2 then A t * Bt "' A2 * B2 . Thus R becomes a group under the 
induced operation. The mapping 

[X ' y ' z ' W] --+ -/t=:::::;;=1 
==:::::;:;= 

[ 
�0 �0 v (y2 + z2) 
0 0 

0 0 ] 
0 0 
z y 

-y z 

(5) 

is an isomorphism of R onto the group of these unimodular (that is, determinant 1 )  
matrices . 

Parameters Let (x , y ,  z ,  w) be a PB . Recalling that the square of an odd integer 
reduces to 1 (mod 8), we see that at least two of x ,  y ,  z in ( 1 )  must be even. Henceforth 
we take y and z to be even. Notice that if (x , y ,  z ,  w)  is nondegenerate (xyz =I= 0) and 
primitive then x and w must be odd. 

For any three integers a ,  b, c with c > 0 and a and b not both 0, a simple computa
tion shows that the quadruple (x , y ,  z .  w) defined by 

x = (a2 + b2 - c2)jc,  y = 2a , z = 2b , w = (a2 + b2 + c2) /c (6) 

is a PB provided that c divides a2 + b2 (see [11 ,  p. 68] ) .  A calculation shows that if 
Ct c2 = a2 + b2 =/= c2 then we obtain the same PB using a ,  b, Ct as we do using a ,  b, c2 
except for the algebraic sign of the first component. For example, ( 1 ,  3 ,  2) yields the 
PB (3 , 2, 6, 7) and ( 1 ,  3 ,  5) yields (-3 ,  2, 6, 7) . Conversely if (x , y ,  z ,  w) is a given 
PB we may find such parameters a ,  b ,  c from the equations 

a = y/2,  b = z/2, c = (w - x) /2 ,  (7) 

and (6) holds . Thus the correspondence 

(x , y ,  z, w) --+ 2(a ,  b, c) 

is one to one. This correspondence carries through to matrices via 

u 

X 0 n
->
[ w � x 0 

n � 2 u 
0 

n -
w 0 

b 0 z 
z 

0 -y -a 
-y 

(8) 

The composite mapping 

[ �  

X 0 n
-> n 

1 w 0 b : J [x , y ,  z, w] --+ .j (y2 + z2) 0 z -a 
0 -y 

(9) 

is an isomorphism of the group n with the group of 2 x 2 matrices 

{A : A = [ _: � J . r, s E Q, r2 + s2 =1= 0 } . ( 10) 

For example, let r = 2/3 and s = 4/5 . Using (6) and (9), the matrix 
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[ 2/3 4/5 J 1 [ 10  12  J M = -4/5 2/3 = 
15  -12  10  

gives rise to the quadruple ( 1 9/ 1 5 ,  24 , 20 , 469/ 15 ) ,  which represents a rational box; 
the corresponding PB is ( 19 ,  360, 300, 469) ,  whose parameters a = 150, b = 1 80, 
c = 225 yield matrix M. 

Subgroups of PTs Consider [x , y,  z ,  w ] with xyz = 0, and look back at (6) .  When 
x = 0, then a2 + b2 = c2 , so these parameters form a PT (a , b ,  c) arising from 
[0, a ,  b ,  c] ,  and (9) gives an isomorphism of this subgroup (corresponding to the ra
tional points on the unit circle) with the subgroup of the group in ( 1 0) consisting of 
unimodular matrices. On the other hand, when y = 0 then z i= 0 and (9) reduces to 

[ (w + x ) /z 0 J [x , 0, z ,  w ] --+ 0 (w + x)jz ' ( 1 1 )  

since a = 0 and bjc = z/(w - x) = ( w  + x)jz .  This gives an isomorphism of this 
subgroup (corresponding to the rational points on the unit hyperbola), with the group 
of nonzero rationals . The fraction in ( 1 1 ) ,  when written in lowest terms, yields the PT 
parameters for (x , z ,  w) as described by the authors in [2] . However, the group of PTs 
there is isomorphic to the subgroup of positive rationals due to the fact that only the 
middle components are allowed to be negative in that discussion. 

The subset of R with z = 0 is of no algebraic interest since it is not closed under 
our binary operation. 

The field of PBs; the subfield of PTs The matrices described by ( 10) ,  together 
with the zero matrix, form a field F isomorphic to the field of Gaussian rationals. 
If we make an exception and include [ 1 ,  0, 0, 1] in the set R of equivalence classes 
of PBs, we can extend the composite mapping (9), and pair [ 1 ,  0, 0, 1] with the 2 x 2 
zero matrix. In this way, the thus-enlarged R becomes a field isomorphic to F, the 
addition in R induced by that in F. The zero element of R is [ 1 ,  0, 0, 1 ] ,  and the 
additive inverse of [x , y ,  z, w] is [x , - y ,  -z ,  w] .  One must be careful to interpret 
n [x ,  y ,  z ,  w] correctly for positive integers n :  it is not [nx , ny , nz ,  nw]  (which is the 
same as [x , y ,  z ,  w]) .  A computation shows that 

n [x ,  y ,  z ,  w] = [ (n2 + 1 )x + (n2 - 1 ) w , 2ny , 2nz ,  (n2 - 1 )x + (n2 + l )w ] .  

Clearly the general formula for addition in  R i s  complicated; addition in  particular 
cases is best carried out using parameters. For example, 

[3 , 2, 6, 7] + [4 , 2, 4, 6] --+ [ _ij; jj; ] + [ -i � J = 

[ 7/2 3/2 J -3/2 7/2 --+ [27 , 6, 14, 3 1 ] .  

The subset P consisting of (equivalence classes of) PTs of R with y = 0 i s  a sub
field of R which is isomorphic to the field of rationals; indeed the mapping ( 1 1 ) , when 
extended to map [ 1 ,  0, 0, 1] to the zero matrix, is a field isomorphism. Thus R is a 
2-dimensional field extension of P. Multiplication of PTs is illustrated in [2] . As an 
illustration of addition of PTs , the reader may check (using ( 1 1 )  and (7)) that 

[3 , 0, 4, 5] + [5 , 0, 12 ,  1 3] = [45 , 0, 28, 53 ] .  

Interestingly, the subset of  R with x = 0 is not closed under addition. 
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The nature of components In this section we consider nondegenerate PBs .  It is 
known [11, p .  407] that a positive integer w is the inside diagonal of a Pythagorean 
Box if and only if it is not of the form w = 2; or w = 2; x 5 (where i is a nonnegative 
integer) . If, as we do for the remainder of this section, we restrict ourselves further 
to primitive PBs, then only odd integers w =I= 1 ,  5 can so serve (even values of w are 
easily ruled out because two other components are even) . In contrast, every positive 
integer is one of the first three components (that is, an edge) of a PB . If n > 1 is an odd 
integer then (n "2- 1 "4+2"2-3 "4+2"2+5 ) is a PB · for n - 1 we exhibit ( 1  2 2 3) For ' 2 ' 8 ' 8 ' - ' ' ' , • 
even integers we see that (h2 + k2 - 1 ,  2h , 2k, h2 + k2 + 1 )  is a PB for any integers 
h and k. In fact, taking h = k we see that every positive even integer is the edge of a 
square side of some Pythagorean Box. The same cannot be said of odd integers since 
at least two of the first three components of a PB must be even. 

Let us pursue PBs of the form (x , y ,  y ,  w) with a square y x y base and altitude x . 
Thus 

( 1 2) 

When x = 1 ,  ( 1 2) is a Pell equation with a well-known infinite set of primitive solu
tions [1] : 

S = { (w ,  y)  = (3 , 2) , ( 17 ,  1 2) ,  (99 , 70) , (577 , 408) , . . .  } 

Thus there are an infinite number of boxes with a square base and altitude 1 .  The 
first few such PBs are (x ,  y ,  z ,  w) = ( 1 ,  2, 2, 3 ) ,  ( 1 ,  12 ,  1 2, 17 ) ,  ( 1 ,  70, 70, 99) , 
( 1 ,  408 , 408 ,  577) . What other altitudes x are possible? The infinite solution set S 
together with the least positive solution of ( 1 2) can be used to generate an infinite 
solution set for ( 1 2) ,  assuming that x is an integer for which ( 1 2) is solvable. This 
is done using Brahmagupta's identity [1, p. 320] , a form of which asserts that if 
t1 = wf - 2yf and t2 = w� - 2y� , then t1 t2 = wj - 2yj , where w3 = Wt w2 + 2Yt Y2 
and Y3 = w1y2 + w2y1 • For example, the solutions in S are reproduced in this way, 
combining two ( w ,  y) pairs to form a third. 

Equation ( 1 2) is solvable exactly when x = ± 1  or is a product of primes = ± 1  
(mod 8) .  To see why this i s  true let (x ,  y ,  w )  be a primitive solution of ( 1 2) and let p be 
an odd prime divisor of x . Then w and p are relatively prime, so y is invertible (mod p) 
and we may let t be an integer such that w = ty (mod p). Substituting into ( 1 2) ,  
we see that x2 = (t2 - 2)y2 and so (t2 - 2) = 0 (mod p).  This shows that 2 is a 
quadratic residue of p .  But then we must have p = ± 1  (mod 8) (see [1 ,  p .  1 30]) .  For 
the converse, it is known [10, p. 2 10] that if p is a prime = ± 1  (mod 8) then ( 1 2) 
with p in place of x2 has a primitive solution. Using Brahmagupta's identity, it follows 
immediately that ( 1 2) is solvable when x is a product of such primes. 

For each of these allowable altitudes ,  x, the set of primitive solutions of ( 1 2) is infi
nite. For example, there are an infinite number of PBs with a square base and altitude 
7, or 17 ,  or 7 x 1 7  = 1 19 ,  etc. 

Perfect Pythagorean Boxes Are there any perfect Pythagorean Boxes in the sense 
that all of the sides are Pythagorean rectangles? This famous problem is treated exten
sively by Richard Guy [5, p. 173 ] ,  where the discussion is based on a paper by Leech 
[8] . There is an interesting equivalent, but very different, formulation of this problem 
by Luca [9] . It remains an open question. Computer searches by Korec [6, 7] have 
established 106 as a lower bound for any edge and 109 as a lower bound for the largest 
edge for such boxes. 

Two perpendicular sides of a Pythagorean Box can have an integer diagonal as il
lustrated with the PB ( 1 53 ,  1 04, 672, 697) , which is the smallest known example; both 
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( 1 53 ,  1 04, 1 85) and ( 1 04, 672, 680) are PTs . This i s  a particular case of the following. 
In general, it can be shown that if 

y = 2pqrs ,  

then x2 + y2 and y2 + z2 are squares and 

( 1 3 )  

( 14) 

Expression ( 14) is a square if p4 + s4 = q4 + r4 , and there are an infinite number of 
(primitive) solutions to this equation (see [3, p. 644] , [11 ,  p. 55] ,  and [13]) .  The right
hand side of ( 14) can be a square without the factors being equal, as shown by our 
example where (p , q ,  r, s) = ( 1 3 ,  1 ,  2, 2) . An example that is not of the form ( 1 3 )  is 
given by ( 1 17 ,  520, 756, 925 ) .  Unlike the previous example, the two even components 
do not give rise to a PT. If we have whetted your appetite, further discussions are 
available ( [5] and [8] ) .  
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A Simple Fact About Eigenvectors 
That You Probably Don't Know 

W A R R E N  P. J O H N S O N  
U n iversity of Wiscons i n  

Madison, WI 5 3 706 

Suppose, in a course in elementary linear algebra, we are doing a first example 
of the calculation of eigenvalues and eigenvectors, say for the matrix A = G �) . The 
eigenvalues are the solutions of (5 - A.) (6 - A.) - 2 · 3 = 0, which are A. 1 = 3 and 
A.2 = 8. To get the eigenvector corresponding to A. 1 = 3, we find a basis for the null 
space of A - 3/ :  
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A - 3 1  = ( � � ) ====> v 1  = ( _ � ) is an eigenvector. 

To get the eigenvector corresponding to A.2 = 8, we find a basis for the null space of 
A - 81 :  ( -3 A - 8/ = 3 is an eigenvector. 

The first time I ever did an example like this in front of a class, several students 
remarked at this point (paraphrased) : "Hey look, both columns of A - 31  are the same 
as v2 ! And, well, that's not quite true for A - 8/ ,  but at least both columns of that are 
multiples of v1 . Does that always happen?" In other words, they were led to conjecture 

THEOREM 1 .  Suppose A is a 2 x 2 matrix with distinct eigenvalues A. 1  and A.2, and 
corresponding eigenvectors v1 and Vz respectively. Then both columns of A - A. 1 /  are 
multiples of v2, and both columns of A - A.2/ are multiples of v1 •  

Did you know that? I didn' t. My initial reaction (which I had just enough sense 
to hide from my students) was : it's probably false, because if it were true, it would 
be in all the textbooks. In fact it doesn' t  seem to be in any of the textbooks ; neither 
has anyone I 've shown it to recognized it. I found one person who had observed the 
phenomenon, and one or two others proved the theorem on the spot. We shall deduce 
it from 

LEMMA 1 .  Suppose A is a matrix with at least two distinct eigenvalues. Let A. be 
one of them, and let v be an eigenvector whose eigenvalue is not A.. Then v is in the 
column space of A - A.I. 

This follows in turn from the trivial 

LEMMA 2 .  If v is an eigenvector of A with eigenvalue J.L, then v is also an eigen
vector of A - A.l with eigenvalue J.L - A.. 

Proof of the Lemmas. We have 

(A - H) v = Av - A.v = J.LV - A.v = (J.L - A.) v ,  

which is Lemma 2. I f  J.L i= A., this says that a nonzero scalar multiple of  v is a lin
ear combination of the columns of A - H, so v is itself a linear combination of the 
columns of A - H, i. e. , v is in the column space of A - H ;  thus Lemma 1 .  

This unprepossessing lemma has some · interesting consequences, as we shall see. 
Theorem 1 follows immediately, since the column spaces of A - A. 1 /  and A - A.2/ 
there are one-dimensional. Moreover, we have the following generalization: 

THEOREM 2 .  Suppose A is an n x n matrix with a set S = { v1 , v2 , . • . , Vn } of n 
independent eigenvectors. If A. is an eigenvalue of A, then 

( i) The eigenvectors in S that correspond to A. are a basis for the null space of A - A. I . 
( ii) The eigenvectors in S that do not correspond to A. are a basis for the column space 

of A - H. 
Proof The point of the theorem is (ii) .  Since the eigenvectors of A corresponding 

to A. are all the vectors in the null space of A - H, (i) holds by definition. To prove 
(ii), suppose that there are k eigenvectors in S that correspond to A. .  Then we know that 

(a) There are n - k eigenvectors in S that do not correspond to A., all of which, by 
Lemma 1 ,  are in the column space of A - A. I .  
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(b) The dimension of the null space of A - AI i s  k ,  and hence the dimension of the 
column space of A - AI is n - k .  

(ii) follows from (a) and (b) , since whenever we have n - k independent vectors in a 
vector space of dimension n - k, they must be a basis for it. • 

Theorem 1 provides a simple check on eigenvector calculations for most 2 x 2 ma
trices . It could also be used to shorten them: if we had Theorem 1 when we were doing 
our first example, consideration of either A - 3I  or A - 8I would give us both eigen
vectors of A at once. This idea might be used with advantage when the eigenvalues and 
eigenvectors are not so nice numerically, e.g. , if they are complex. The eigenvalues of 

G -n are 'A = 2 ± 3i . To find the eigenvector for 2 - 3i we should ordinarily have to 
find the nullspace of 

-2 ) ( - 1 + 3i 
3 - (2 - 3 i )  - 5 

-2 ) 
1 + 3i . 

It is not hard to imagine a student making a mistake doing this . We might observe 
instead that either column of the above matrix, say 

and hence 

( 
1 �2

3i
) , must be an eigenvector for 2 + 3 i ,  

( -2 ) must be  an eigenvector for 2 - 3i . 1 - 3i 

The probability that Theorem 2 can be used in a similar way for a larger matrix is 
small, but not zero. One such example, the details of which we leave to the reader, is ( 3 2 1 ) 

0 2 0 . 
3 6 5 

One might say that the most interesting thing about Theorem 2 is that it is not 
interesting-the general case is, in a sense, less interesting than the 2 x 2 case. But I 
do think Theorem 2 brings together some of the theory of a basic linear algebra course 
in an appealing way. 

Lemma 1 further enables an easy proof of a standard result on eigenvectors of sym
metric matrices : 

THEOREM 3 . Let A be a real symmetric n x n matrix. If v and w are eigenvectors 
of A with different eigenvalues, then v ..l w. 
Recall that a real symmetric matrix has real eigenvalues and eigenvectors, so no com
plex conjugation is needed for the orthogonality. 

Proof Let 'A be the eigenvalue for v; this means that v is in the null space of A - AI . 
Moreover, since 'A is not the eigenvalue for w ,  w is in the column space of A - 'AI . 
Since A is symmetric, A - AI is also symmetric, and therefore w is in the row space 
of A - 'AI . But the row space and the null space are orthogonal complements, so we 
must have v ..l w .  • 

This argument is outlined in problem 1 8  in section 6.4 of Strang [1] . It seems to me 
at least as good as the usual, more computational proof, which one can also find there 
(or in any number of other linear algebra books). 
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A Genera l i zed Genera l  Assoc i ative Law 
W I L L I A M  P. W A R D L A W  

U .  S .  N aval Academy 
An napol is, MD 2 1 402 

This note is primarily evangelical. I urge you to adopt, as your favorite proof of the 
general associative law, a proof that generalizes that law. 

Most of us would agree that the general associative law is an interesting and impor
tant concept of abstract algebra. But a cursory sampling of algebra texts shows that the 
treatment of this law differs considerably from author to author; some treatments are 
hazy, and others are incomplete. 

I favor the job done by Nathan Jacobson in [11] . He begins on page 20 by induc
tively defining the left associated product n'; a; by the formulas 

r+l ( r ) 
Q a; = Q a; ar+ l · 

Next, Jacobson uses the associative law 

(ab)c = a (bc) 

and induction on m to establish, as a lemma, that 

n m n+m n a; n ai+n = n a; .  
1 1 I 

( 1 )  

(2) 

(3) 

Finally, Jacobson uses induction to show that all products associated with (a 1 · 
a2 · · · a" ) are equal: 

( m ) (11-m ) n 
= Q a; Q ai+m = Q a; . 

Hungerford [10, p. 28] gives the same proof as Jacobson, but neatly shortens it to 
six equalities. 

Zassenhaus [19, p .  1] tersely asserts :  "A product of arbitrarily many factors is deter
mined solely by the order of its factors." He lets n be greater than three, and assumes 
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that for every m < n the product a1 • a2 · am designates, "unambigously, an element of 
the group." Then 

P = a1 · a2 · · · an = P1 P2 = (at · a2 · · · am ) (am+ t · am+2 · · · a,. ) 

= (a t (a2 . . .  am ) )  (am+ I . am+2 . . .  all ) (4) 

= a[ ( (a2 . . .  am ) (am+ l . am+2 . . .  a,. ) )  = a[ (a2 . . .  an ) 

uniquely determines the product. (I recommend that you read the original, where 
Zassenhaus makes exactly those comments necessary to make the proof totally un
ambiguous.)  

Barnes [2] gives a statement and proof of the general associative law on pages 12 
and 13 which is almost exactly the same as given by Zassenhaus, except that Barnes 
uses the left associated product and Zassenhaus uses the right associated product as 
their standard products . Michael Artin [1] and Ledermann [13] give valid proofs simi
lar to (4) , but I find both a bit ambiguous or hazy. 

W. R. Scott [14, pp. 3-4] allows no ambiguity in his statement and proof of the 
General Associative Law 1 . 1 .3 .  His distinctive approach is well worth reading ! 

Van der Waerden [15, p. 1 6] stops short of the general associative law and only 
proves (3) .  Both Chevalley [5, p. 4] and Zariski and Samuel [18, pp. 2-3] prove that if 
n0 ,  n 1 ,  . . .  , n, are integers such that 0 = n0 < n 1 < · · · < n, = n, then 

r ( llj ) n 

fl fl a; = fl ak > j= l k=nj- t + l 1 

which stops short of the general associative law. 

(5) 

A number of authors do not prove the general associative law. Among these are 
Birkhoff and MacLane [3] , Erlich [6] , Hall [7] , Hu [9] , Lang [12] , Walker [16] , who 
say it can be shown, and Herstein [8] , who seems not to mention it at all . Walker [16, 
p. 32] , cites Jacobson. Hall [7] relegates the proof to Exercise 1 on page 24. 

With such a plethora of proofs and nonproofs of the general associative law, one 
could rightfully wonder what could be added to the subject. But there is a proof in [17] , 
much like the treatment by Barnes in [2] and by Zassenhaus in [19] , which actually 
generalizes the general associative law. To see this , allow me to introduce some of the 
notions from [17] . 

We define a groupoid to be an ordered pair ( G ,  * ) ,  where G is a set and * is a (full) 
binary operation on G;  that is, * is a function * : G x G --+  G with domain G x G 
and range a subset of G. (See [2, p. 24] or [4, p. 1 ] . ) We denote the groupoid with a 
boldface G, and let G2 denote the set of all products in G, that is, the range of the bi
nary operation * · As is usual, we will henceforth denote a * b by ab . A groupoid G is 
n-associative if the product of any n elements is independent of how they are associ
ated, that is, if a1a2 · · · an denotes unambiguously an element of G independent of the 
way the product is parenthesized. Now we can state the "Generalized General Asso
ciative Law": 

THEOREM 1 .  Let G be a groupoid that is n-associative for some n ::: 3. Then G is 
(n + I ) -associative. 

Proof Assume that G is n-associative. Consider a product p = (a 1a2 · · · anan+ t )  
of n + 1 elements of G with some association of factors. (We adopt the conven
tion of using "=" between products which have the same parenthesization, or to 
assign values with a fixed parenthesization to a single variable, and using "=" 
when n-associativity implies the equality of the products . )  Then there must be 
a number k with 1 ::::: k ::::: n such that the elements ak and ak+ 1  are grouped to-



2 3 2  MATH EMATICS MAGAZI N E  

gether to form the element bk = akak+ 1 of G. If i < k ,  let b; = a; , and let 
b; = ai+ l if i > k. Thus we have p = (b1b2 · · · b11 ) = (b1 · · · b11- J )b11 •  If k < n ,  
the latter i s  p = (b1 · · · bn- J )an+ l = (a1 . . .  a11 )an+ 1 · But i f  k = n ,  n - I � 2 and 
p = (bJ . . .  bn- J )bn = ( (b 1 b2) . . .  )bn = ( (a 1a2) . . .  ) (a11an+d = (CJ . . .  ) (C11 - J C1. ) with 
c1 = a1a2 and c; = ai+ l for i > 1 .  Then n-associativity gives p = (c1 · · · C11_ 1 )c11 = 
( (a 1a2) · · · a11 )an+ 1 = (a 1 · · · a11 )an+1 · Thus, in any case, p is the unambiguously de
fined element (a 1 · · · a11 )an+ l of G. Therefore, G is (n + I ) -associative. • 

This proof is quite similar to the Zassenhaus proof, but with one significant differ
ence. In order to apply induction, Zassenhaus started with an "external factorization" 

while we found it necessary to use an "internal factorization" 

(6) 

to reduce a product of n + I elements to a product of n elements, to which n
associativity could be applied. Of course, each of these factorizations rests on the 
requirement that a binary operation can only act on exactly two elements of the 
groupoid. 

There are probably as many variations of the proof that n-associativity implies (n + 
I ) -associativity as there are of the standard general associativity law. One can be less 
formal and avoid introducing the variables b; and c; , or one can more formally define 
an n-product and show that every n-product is equal to a standard n-product, perhaps 
the left associated product (3) .  For example, see [17, p. 588] . It seems certain that the 
internal factorization ( 6) must be part of the proof. It would be nice if the awkwardness 
of the k = n case in (6) could be more gracefully handled. 

We claim that Theorem I is a proper generalization of the general associative law. 
To see this , we must produce examples of strictly n-associative groupoids, that is, 
groupoids that are n-associative but are not (n - I ) -associative. The construction of 
examples is hampered if one is unaware of the following result: 

THEOREM 2 .  Let G be a groupoid such that G2 = G. Then G being (n + I ) 
associative implies that G is n -associative. 

Proof Let (a 1 a2 · · · an ) be an arbitrary product of n factors . Writing a1 = b1 b2 and 
bi+ l = a; for i = 2, 3 ,  . . .  , n ,  we see that (a 1a2 · · · an )  = (b 1 b2 · · · bn+J ) = f17

+1 b; = 
fl'; a; after applying (n + I ) -associativity to (b1 b2 · · · bn+ J ) . • 

Once one knows to avoid putting all elements of G into the multiplication table, 
examples of strictly n-associative groupoids are readily available. Here are several 
examples from [17] : 

Example 1 .  Let G be the groupoid with multiplication table 

* 

I 
2 
3 
4 

I 

2 
4 
4 
4 

2 

3 
4 
4 
4 

3 

4 
4 
4 
4 

4 

4 
4 
4 
4 

G is 4-associative because the product of any four elements of G is 4. Since ( I  * I ) * 
I = 2 * I = 4 "I= I * ( 1  * I )  = I * 2 = 3 ,  G is not 3-associative. Hence, G is strictly 
4-associative. 
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Example 2 .  Let G be the groupoid with multiplication table 

* 

1 
2 
3 
4 

1 

2 
4 
4 
4 

2 
4 
3 
4 
4 

3 

4 
4 
4 
4 

4 

4 
4 
4 
4 

2 3 3  

G i s  5-associative because the product of any five elements of G i s  4 .  Since ( 1  * 
1 )  * ( 1  * 1 )  = 2 * 2 = 3 f. ( ( 1  * 1 )  * 1 )  * 1 = (2 * 1 )  * 1 = 4 * 1 = 4, G is strictly 
5-associative. 

These examples readily generalize. 
Example 3. Let G = ({ 1 ,  2, . . .  , k } ,  *) for k :::: 4 be the groupoid with binary oper

ation * given by 

Then G is strictly k-associative. 

if a = 1 and b < k, 
otherwise. 

Example 4.  Let G = ({ 1 ,  2, . . .  , k } ,  *) for k :::: 4 be the groupoid with binary oper
ation * given by 

Then G is strictly (2k-Z + I ) -associative. 

if a =  b < k, 
otherwise. 

These examples show that Theorem 1 is a proper generalization of the general as
sociative law. The interested reader is directed to [17] , which examines the possible 
cardinalities of strictly n-associative groupoids. 
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An Application of the Marriage Lemma 

A N D R E W L E N A R D  
I nd iana U n ivers ity 

B loom i ngton, I N  4 7405 - 7 1 06 

An important proposition in graph theory is a celebrated theorem of Konig and Hall, 
often referred to as the Marriage Lemma [1] . Let us briefly recall what this theorem 
is about and why it deserves this name. By a graph one means a set (for our pur
poses always finite) whose elements are referred to as vertices, together with a certain 
distinguished set of unordered pairs of vertices, referred to as edges. 

A graph is called bipartite if the set of vertices is partitioned into two parts so that 
no edge connects two vertices in the same part. These two parts shall be denoted by 
G and B, having the application in mind that G is a set of girls and B a set of boys;  
the elements will be called g-vertices and b-vertices (girls, respectively boys). In this 
application an edge between vertices g and b has the meaning that boy b is acceptable 
to girl g as a future marriage partner. In general, for a given bipartite graph we say that 
G can be matched into B,  if it is possible to select for each g-vertex one edge incident 
with it such that no two edges thus selected terminate on the same b-vertex. Thus, a 
matching in the application indicates that it is possible to arrange that each girl shall 
be married to a boy acceptable to her, without thereby any bigamy being created. 

A matching for a bipartite graph may or may not be possible, but if it is, then for 
every subset F of G the total number of b-vertices that are connected to some g
vertices in F cannot be less than the number of g-vertices in F. This much is obvious. 
But what is far from obvious is that this condition is also sufficient; that constitutes the 
content of: 

THEOREM 1 .  (MARRIAGE LEMMA . )  If in a bipartite graph the condition I F I � 
I { b E B : b connected by an edge to some g E F} I holds for all subsets F � G, then 
a matching of the set G of g-vertices into the set B of b-vertices is possible. 

Here and in the following we use the notation that I · I is the number of elements of 
the set indicated between the bars . 

We shall not prove the Marriage Lemma here; proofs are found in many books on 
graph theory, for instance in The Theory of Graphs and its Applications by Claude 
Berge [1] . What we shall prove, however, is a stronger sufficient (though not neces
sary) condition for the existence of a matching with the sufficiency of this condition 
following from the Marriage Lemma itself. 

THEOREM 2. !f in a bipartite graph there is a number k such that 

I {edges incident on vertex g }  I ::: k for all g E G 

and 

I {edges incident on vertex b}  I � k for all b E B,  

then a matching of the set G of g-vertices into the set B of b-vertices is possible. 
Proof Let F be any subset of the set G of g-vertices in the graph, and let A be the 

set of b-vertices that are connected by an edge of the graph to some g-vertex in F. Let 
m be the total number of edges incident on vertices g E F, so by hypothesis m ::: k I F 1 . 
But m is then also equal to the total number of edges incident on vertices b E A, hence 
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m � k i A I  as well . The last two inequalities imply that I F I � I A I .  Thus the condition 
in the Marriage Lemma holds, and so a desired matching is possible. • 

Theorem 2 is strictly weaker than Theorem 1 ,  since a matching may also be possible 
if the hypotheses of Theorem 2 are not satisfied. The simplest example is provided by 
taking two girls g1 and g2 , two boys b1 and b2 , and letting g1 be connected by edges to 
both boys b1 and b2 , while g2 is connected only to b2 • Here the boy b2 is connected to 
two girls, whereas the girl g2 only to one boy, so no number k of the kind required for 
the theorem exists . Yet a matching is obviously possible : Marry g1 to b1 , g2 to b2 ! 

The purpose of this article is to apply Theorem 2 in a problem that concerns se
quences formed from a finite set of symbols ("letters") and using each of the letters 
once. For the sake of brevity, we shall call such sequences arrangements. 

We begin with a simple illustrative example. Consider the following set of six ar
rangements formed from the four letters A, B ,  C, and D: 

A B C D  
B C A D  

A C D B  
D B A C  

A D B C  
C D B A 

This list of six arrangements, chosen from the total number 4! = 24 possible, has an 
interesting property: All 1 5  non-empty subsets of the set {A ,  B ,  C, D} , when each is 
suitably ordered, can be seen as forming an initial segment of at least one of them ! 
(Remember that the concept of set, in contrast to that of sequence, does not involve the 
order of the elements ; for instance, the subset { B ,  A ,  D } must be ordered as A D B in 
order to occur as the initial segment of the arrangement A D B C (third on our list) . )  

It is easy to see that a list of arrangements of four letters that has this property 
cannot have a length less than six. For {A ,  B ,  C, D} has 6 two-element subsets, and a 
little thought shows that each of these has to occur in a different arrangement on the 
list. 

Consider now the corresponding problem for arrangements formed from a set of n 
letters. The above reasoning shows that if such a list has the property that each of the 
211 - 1 nonempty subsets occurs as an initial segment of one of the arrangements on 
the list, then the list must have a length no less than the binomial coefficient that occurs 
along the central line of symmetry of the Pascal Triangle, namely 

where m = L 11"i 1 J (the notation Lx J stands for the integer part of x, that is, the largest 
integer not exceeding it) . The reason is that there are (�) subsets of size k, and each of 
these must form the initial segment of a different sequence on the list. The maximum 
of G) for various k occurs for k = m. The question still remains whether such a list of 
Vn sequences exists . In other words, it is an obviously necessary condition for such a 
list of arrangements that its length be no shorter than v11 ; but is that also sufficient? We 
shall see that the answer is affirmative. 

The author is conscious of a piece of wisdom he learned from his late friend George 
Minty. Minty once exclaimed, "Many of the most beautiful theorems of mathematics 
are of the form: Such and such a necessary condition is also sufficient. The necessity 
is frequently obvious or at least easy to see, but to establish the sufficiency is the real 
trick." 

THEOREM 3 .  Given a set ofn letters, there exists a collection C ofvn arrangements 
of these letters, with the property that each subset of the set of letters, when suitably 
ordered, occurs as the initial segment of some arrangement in the collection C. 
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The first few values of V11 are shown in the table below 

n 1 
1 

2 3 4 
2 3 6 

5 6 7 8 
10  20 35 70 

These numbers are generated recursively by the equations 

Vzn = 2 Vzn- 1 
2n + 1 

Vzn+ 1 = 
n + l Vzn · 

The asymptotic behavior of V11 for large n is obtained from Stirling's Formula 

(as n --+  oo) , 

where the '"" symbol means that the limit of the ratio of the functions of n on the two 
sides of it tends to 1 in the indicated limit. Stirling 's  Formula is a celebrated result that 
should appear in all current calculus textbooks but, apparently, it does not, due perhaps 
to the relatively advanced analysis needed to identify the exact numerical proportion
ality factor (2rr) 1 12 . (For a simple proof without the exact factor see Feller [2, Section 
II .9]) From it, and the explicit expression 

one obtains 

n !  
Vn = ' m ! (n - m) ! 

(as n --+  oo). 

The interesting feature of this asymptotic formula is that when n is large then V11 is 
small compared the total number 211 of subsets of the set of n letters. So while the 
list of arrangements contemplated is relatively short, it accommodates the much more 
numerous collection of subsets, in the manner specified. 

Before proving Theorem 3 we need to consider a combinatorial proposition proved 
by means of Theorem 2. 

THEOREM 4 .  Suppose S is a set with n elements. If k � L 11"i 1 J then from each k
element subset of S, it is possible to remove one element in such a manner that, in 
the collection of the remaining subsets, each k - ! -element subset of S occurs at least 
once. 

This is illustrated in the case n = 4 and k = 2, by removing from the six 2-element 
subsets of {A ,  B ,  C, D} , namely 

{A ,  B } , {A ,  C } , {A ,  D } , {B ,  C } , {B ,  D } , {C , D } , 

the respective elements indicated by underlining. In the remaining collection of 1 -
element subsets {A} occurs three times, while each of {B } , {C } and {D} occurs once. 

Proof of Theorem 4. The condition on k is evidently necessary, since only then is 

(k: 1) � G) . We must show its sufficiency. Here is where Theorem 2 is helpful. Define 
a bipartite graph whose g-vertices are the (k - I ) -element subsets of the given set and 
whose b-vertices are the k-element subsets. Two such subsets are, by definition, to be 
connected by an edge if and only if the smaller is a subset of the larger. 
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We remind the reader that here the vertices, normally visualized as points, are actu
ally sets. This is a good illustration of the power of abstraction in mathematics, for in 
graph theory the nature of vertices is immaterial, only our specification of which pairs 
of them share an edge is relevant. 

Each (k - 1 ) -element subset is contained in precisely n - (k - 1 )  = n - k + 1 
k-element subsets, in other words, each g-vertex is incident with n - k + 1 edges . Sim
ilarly, each k-element subset gives rise to precisely k subsets of size (k - 1 ) ,  obtained 
by deleting each of its elements. Thus the number of edges incident with one b-vertex 
is k. But since k � L nil J � ni l implies k � n - k + 1 ,  the condition of Theorem 2 
is satisfied. Hence, a matching of the g-vertices into the b-vertices is possible. In the 
present case, this means an assignment to each (k - 1 )-element subset a k-element 
subset of which it itself is a subset, but in such a manner that the same k-element 
subset is not assigned to two distinct (k - I ) -element subsets. From each of these 
k-element subsets, delete the element so as to form the assigned (k - 1 ) -element sub
set. From the rest of the k-element subsets delete any one element arbitrarily, as you 
please. This shows that the deletion described in the theorem is indeed possible. • 

Now we are ready to prove Theorem 3 ,  that is to say, to construct a list of V
n 

per
mutations formed from the given n letters, with the required property. 

It should be noted though, that perhaps "construct" is not exactly the right word. 
For use will be made of Theorem 4, which was proved by means of Theorem 2. And 
the latter depends on the Marriage Lemma, a statement that only asserts the existence 
of a matching, without really specifying how one finds it. Given any bipartite graph, 
though, in which a matching is known to exists, one can actually find one-if worst 
comes to worst-by trial and error, in as much there are altogether only a finite number 
of mappings (regardless of whether they are matchings or not) of the set of g-vertices 
into the set of b-vertices ! This is of course a very inefficient procedure, and there are 
better ones. In fact, when one examines a suitable proof of the Marriage Lemma, it 
itself suggests a route to actually finding a matching. The present author learned this 
too from his late friend George Minty who used to love to talk about the Marriage 
Lemma, a particular favorite of his .  

Proof of Theorem 3.  We begin by writing down all subsets of m elements of the 
given set of n elements . Next, we remove one element from each of these subsets so 
that the remaining subsets, of m - 1 elements each, exhaust all subsets of that size. 
This is possible on account of Theorem 4. The element of each subset, distinguished 
by having been removed in this step, is made to be the m th member of the arrange
ments to be formed from elements of the subset in question. Repeating this process, 
from the remaining subsets of m - 1 elements each, we again remove one element, 
in accordance with the requirement of Theorem 3, so that the remaining subsets, of 
m - 2 elements each, again exhaust all subsets of that size; and then take the elements 
removed in this step to become the (m - 1 ) 51 of the arrangement formed from elements 
of the subset in question. 

The process continues the same way until the arrangements of m members each 
have been constructed. Clearly, the list so produced has the property that if k � m 
then every subset of k elements is found as an initial segment of some of the listed 
arrangements. Having accomplished this , we go through the same process with the 
complementary subsets of n - m elements each, but this time construct the required 
arrangements in the opposite order, that is to say, proceeding from the left to right 
(instead of right to left, as before). When this is done then we simply concatenate 
each arrangement obtained from a subset of the given set in the first process with the 
arrangement obtained from the complementary subset in the second process. 

The complete list of sequences, of length n each, then has the required property . 
• 
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To understand this procedure better i t  i s  useful to see a concrete example. We illus
trate the process on the set {A ,  B, C, D, E} of five letters. In each step of the process, 
the distinguished ("removed") element will be underlined. We begin then with the list 
of {;) = 10 subsets of L 51"1 J = 3 elements: 

{A,B ,�} 
{A,D,E} 

{A,�,D} 
{B,C,Q} 

{A,�,E} 
{B ,�,E} 

{A,C,Q} 
{B ,D,!H 

{A,C,E} 
{C,D,!H 

The reader is asked to check that the property required by Theorem 4 holds. After 
having removed the underlined letters (which will become the 3rd members of the se
quences to be constructed) , we deal in a similar way with remaining sets of 2 elements 
each: 

{A,E} 
{B,!;;} 

{C,!;;} 
{C,Q} 

The letters underlined here become 2nd members of the sequences ; and of course the 
remaining letters will be 1 st members . The list of the ten arrangements appears then as 
follows :  

A B C 
D E A  

A D B  
B C D 

E A B  
B E C 

A C D  
B D E  

C E A  
C D E  

Again, please check that all subsets of {A ,  B ,  C ,  D ,  E}  of size no more than 3 elements 
occur as some initial segment of the arrangements displayed above-as they have to. 

According to plan, next we work on the subsets of 2 elements each, complementary 
to the previous ones. This gives rise to the following : 

{C,!;;} 
{A,!;;} 

{C,D} 
{A,D} 

m, E} 
{A,C} 

{B,D} 
{A,B} 

With the distinguished element put into 1 st place one has then the 10  arrangements of 
length 2:  

E D  
C B  

E C  
E A  

D C  
A D  

B E  
A C  

D B  
A B  

Concatenating each of the arrangements of 3 letters, obtained previously, with the 
corresponding arrangement of the complementary 2 letters, as above, we obtain then 
the final result in the form of a list of 10 arrangements of 5 letters each: 

A B C E D  
D E A C B  

A D B E C  
B C D E A  

E A B D C  
B E C A D  

This list has the property required by Theorem 3 .  

A C D B E 
B D E A C  

C E A D B  
C D E A B  
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1623. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. 
Find the number of ways that k copies of the tromino 

can be placed, with the orientation shown and without overlapping, on a 3 x n 
rectangle. 

1624. Proposed by Murray S. Klamkin, The University of Alberta, Edmonton, AB, 
Canada. 

An ellipsoid is tangent to each of the six edges of a tetrahedron. Prove that the three 
segments joining the points of tangency of opposite edges are concurrent. 

1625. Proposed by Mihaly Bencze, Romania. 
Let x1 , x2 , • • •  , Xn be positive real numbers and let a1 , a2 , • • •  , an be positive inte

gers. Prove that 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames lA 5001 1 ,  or mailed electronically (ideally as a J5IEX file) to 

ehj ohnstGiastate . edu. All communications should include the readers name, full address, and an e-mail 

address and/or FAX number. 
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1626. Proposed by Hojoo Lee, student, Kwangwoon University, Seoul, South Korea. 

Let J, g ,  h : IR ---+ IR be functions such that f (g (O) ) = g (f (O)) = h (f (O)) = 0 
and 

f (x + g (y)) = g (h (J(x)) )  + y 

for all x ,  y E R Prove that h = f and that g (x + y) = g (x) + g (y) for all x , y E R 

1627. Proposed by Jiro Fukuta, Shinsei-cho, Gifu-ken, Japan. 

Semicircle C has diameter AoAn . Semicircles C1 , C2 , . . •  , Cn are drawn so that 
Ck has diameter Ak- t Ak on AoAn .  In addition, C1 is internally tangent to C at A0 
and externally tangent to C2 at A t .  Cn is internally tangent to C at An and externally 
tangent to Cn- t at An- t .  for 2 ::S k ::S n - 1 ,  Ck is externally tangent to Ck- t and Ck+ t 
at Ak- t and Ak respectively, and each Cb 1 ::S k ::S n is tangent to a chord P Q of C.  
The case n = 5 i s  illustrated in  the accompanying figure. 

(a) Let A t  A� and An- t A;,_ 1 be perpendicular to AoAn at A t  and An- t .  respectively. 
Let circle X be externally tangent to C2 , internally tangent to C and tangent to 
A 1A� on the side opposite Ct . and let circle Y be externally tangent to Cn- t .  in
ternally tangent to C and tangent to An_ 1 A;, _ 1 on the side opposite Cn . Prove that 
circle X is congruent to circle Y. 

(b) Suppose C0 is a semicircle with diameter on A0A11 and tangent to P Q. Let D and 
E be the endpoints of its diameter. Lines D D' and E E' are drawn perpendicular to 
AoAn . Let Z be the circle tangent to each of DD' and EE' and internally tangent 
to C.  Show that Z is tangent to the circle with diameter A 1An- t · 

Q u i ck ies 
Answers to the Quickies are on page 246. 

Q911. Proposed by Murray S. Klamkin, The University of Alberta, Edmonton, AB, 
Canada. 

Two points P and Q are on opposite sides of a given plane in IR3 . Describe how to 
determine a point R in the plane so that I P R - Q R I is maximal . 

Q912. Proposed by David W. Carter, Draper Laboratory, Cambridge, MA. 

Let A, B ,  and C be distinct, non-collinear points in the plane. In which direction 
should we move B to obtain the largest rate of increase in LABC?  
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So l utions  
The Fall Is Steeper than the Rise June 2000 
1599. Proposed by Ice B. Risteski, Skopje, Macedonia. 

Given a > f3 > 0 and f (x)  = x"' ( 1 - x)fl . If 0 < a  < b < 1 and f (a) = f (b) , 
show that f'(a) < -j 1 (b) .  

(I) Solution by Reza Akhlaghi, Prestonsburg Community College, Prestonsburg, KY, 
and Fary Sami, Halford Community College, Bel Air, MD. 

Using 

we have 

1 1 f3 a fJ [a ( b ) b ( 1 - a ) ]  
f (a) + f (b) = - a  ( 1 - a) - 1 + - - -- 1 + -.- . 

b f3 a 1 - a 1 - b 

( 1 )  

(2) 

Let � = r > 1 and � = t > 1 .  From ( 1 )  we then have ::::� = t�" . Combining this 
equation with b = at we can solve for a and b in terms of r and t to get 

tr - 1 
a = --

tr+ l - 1 
and b = 

t W - 1 ) . 
tr+ l - 1 

Substituting these expressions inside the square brackets in (2) , then simplifying, 
we obtain 

Jl (a) + Jl (b) = _!!_ a"' ( l - a)fl 
[t2r - rtr+ l + rtr- 1 - 1 ] . (3) 

b tr- l (t - 1 )  

Let g (t) = t2'" - rtr+ l + rtr- l - 1 ,  so 

g1 (t) = rtr-Z (2tr+ l - (r + 1 ) t2 + (r - 1 )) = r{-2h (t) , 

with h (t) = 2tr+ l - (r + 1 ) t2 + (r - 1 ) .  Because h 1 (t) = 2(r + 1 )W - t) is pos
itive for t > 1, it follows that h (t) > h ( l )  = 0 for t > 1, and then that g (t) > 

g ( l )  = 0 for t > 1 .  Hence, from (3) we have f'(a) + f'(b) < 0, so j1(a) < 
-f 1 (b) . 

(Il) Solution by the proposer. 
Let a/{3 = r and bja = t .  The equality f (a) = f(b) then implies that ::::� = tr . Next note that the inequality f'(a)  < -j1 (b) is equivalent to 

a (� + �) < f3 (-1 
+ _

1 ) . 
a b 1 - a 1 - b 

This can be rewritten as 

which reduces to 

a t - !  {3 � - l  
__ ..:...1 ,...... < tr 

..;aE 't - _!_ J(l - a) ( l - b) Jt' - -1 ' y t  ...ji ..R 

( 1 )  
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Now let 

2 sinh(sx) 
g (x) = ' 

X 
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where s = ln t > 0 .  It i s  easy to check that g i s  increasing on the interval x > 0. 
The inequality ( 1 )  then says g ( l )  < g (r ) ,  which is true because r > 1 .  

Also solved by Jean Bogaert (Belgium) , Con Amore Problem Group (Denmark) , R. Daniel Hurwitz. There 

were two incorrect results submitted. 

Tangent to Conic as Angle Bisector June 2000 
1600. Proposed by Juan-Basco Romero Marquez, Universidad de Valladolid, Val
ladolid, Spain. 

Let C be either an ellipse or a hyperbola. For P a point on C, prove that the tangent 
line to C at P bisects one of the angles formed by the tangents to the circles passing 
through P with centers at the foci of C.  

Solution by Michael Woltermann, Washington and Jefferson College, Washington, PA. 
Let F1 and F2 be the foci of the conic . By the reflexive properties of the ellipse or 

hyperbola, the tangent at P makes equal angles with the focal radii F1 P and F2 P .  It 
follows that the tangent and normal lines to the conic at P bisect the vertical angles 
formed by lines F1 P and F2P ,  and thus also bisect the vertical angles formed by the 
perpendiculars to F1 P and F2 P at P .  These perpendiculars are the tangents at P to 
the circles passing through P and centered at the foci of the conic. 

Also solved by Reza Akhlaghi and Fary Sami, Henry J. Barten, Michel Bataille (France) , J. C. Binz (Switzer

land), Jean Bogaert (Belgium) , Michael Brozinsky, Con Amore Problem Group (Denmark) , Ragner Dybvik (Nor

way) , Matt Foss, Ming-Lun Ho, Hans Kappus (Switzerland), Robert Mandl, Jose H. Nieto (Venezuela) , Raul A. 

Simon (Chile), Peter Y. Woo, Li Zhou, and the proposer. 

Regular Polygons on a Circle June 2000 
1601. Proposed by John Clough, State University of New York at Buffalo, Buffalo, 
NY; Jack Douthett, TV! Community College, Albuquerque, NM; and Roger Entringer, 
University of New Mexico, Albuquerque, NM. 

Let a and b be positive integers . Place a white points on a circle so that they form 
the vertices of a regular a-gon. Place b black points on the same circle so that they 
form the vertices of a regular b-gon and so that white and black points are distinct. 
Beginning with a black point whose clockwise distance from the nearest white point 
is a minimum, and proceeding clockwise, label the points with the integers 0 through 
a +  b - 1 .  Prove that the black points have labels Lk (a + b)jbJ , k = 0, 1 ,  . . .  , b - 1 ,  
and that the white points have labels rk (a + b)fal - 1 ,  k = 1 ,  2, . . .  ' a .  
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Solution by Jose H. Nieto, Universidad del Zulia, Maracaibo, Venezuela. 
Let l(P) denote the label assigned to point P . Let B0 , B1 , . . •  , Bb-l be the black 

points, numbered clockwise, so that l(B0) = 0. Let Aa be the white point from which 
the clockwise distance to B0 is minimal, and number clockwise the other white points 
as A 1 ,  A2 , . . .  , Aa-l · If we rotate clockwise the white points until Aa reaches B0, then 
no white point passes over a black point. The label assigned to the kth black point 
must be k + j where j is the number of rotated white points in arc (B0 ,  Bk] .  Because 
the points A,. , Bs each are vertices of a regular polygon, it follows that j is the great
est integer such that jcja ::s kcjb, where c is the circumference of the circle. Hence 
j = LkajbJ and l (Bk ) = k + LkajbJ = Lk (a + b)jbj . Next, observe that the mini
mal counterclockwise distance from a black point to a white point is attained from B0 
to Aa . Hence we may use the previous argument to calculate the labels for the white 
points, proceeding counterclockwise and interchanging the roles of of the black and the 
white points . More precisely, put B[ = Aa-i for i = 0, I ,  . . .  , a - I and A} = Bb- j for 
j = I ,  2, . . .  , b, and let l' (P') be the label assigned to P' in the counterclockwise num
bering. Note that l' (P) = a +  b - I - l (P) . We then have l' (B� ) = Lk(a + b)jaJ , 
and hence, 

l (Ak) = a +  b - I - l' (B�-k ) = a +  b - I - L (a - k) (a + b)jaJ 

= - I  - L -k(a + b)jaJ = lk (a + b)fal - 1 .  

Also solved by Hamza Ahmad an d Nancy Colwell. Jean Bogaert (Belgium). Richard F. McCoart, Jr., an d th e 

proposers. 

Points in a Prism June 2000 
1602. Proposed by Michael Golomb, Purdue University, West Lafayette, IN. 

Suppose S is a bounded set of points in :IR" , n � 2, such that every n-simplex whose 
vertices are points of S has volume at most V .  Prove that there exists an n-prism of 
volume at most 2n (n - 1 )" - 1 V that contains S.  

(An n-prism is an n-dimensional solid bounded by two parallel hyperplanes and 
a finite number of hyperplanes, each of which contains a line parallel to a fixed line 
intersecting these two hyperplanes . )  

Solution by the proposer. 
By considering the closure of S, if necessary, we may assume that S is compact. 

We may also assume that S is not contained in an (n - I) -dimensional subset of :IR" 
because such a set is included in a sufficiently large (n - 1 ) -cube of n-volume 0. 

We first consider the case n = 2. Let m be the maximal length of a segment connect
ing two points of S, and let l be such a segment. At each end of l draw a segment of 
length 4 V j m perpendicular to l and bisected by the endpoint of l. These two segments 
are two sides of an m by 4 V jm rectangle that contains S.  

Now assume that n � 3 .  Let a0 be an (n - I ) -simplex of maximum (n - I ) -volume 
m among those whose vertices are points of S, and let H0 be the hyperplane containing 
a0 • Any n-simplex with base a0 and vertex p E S has volume not exceeding V if and 
only if dist(p , H0) ::s n V jm . Therefore S is a subset of the region of :IR" between H+ 
and H_ , where H+ and H_ are hyperplanes parallel to H0 at a distance n V jm on either 
side of Ho . 

Let vi , i = I ,  2, . . . , n denote the vertices of a0 , and let fi be the (n - 2)-simplicial 
face of a0 that is opposite vertex vi . An (n - I) -simplex with base fi and vertex p E 
S n H0 has (n - I) -volume not exceeding m only if p lies in the half-space of H0 that 
contains fi and is bounded by the (n - 2)-dimensional plane h; that is parallel to fi 
and passes through v; . Thus S n H0 is a subset of the (n - I ) -simplex a 0 whose faces 
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lie in the planes h t .  h2 , • . •  , hn . In the lemma below we prove that 

vol(a0) = (n - 1 )"- 1 vol(a0) = (n - l )"- 1m , 

where the volumes here are (n - I ) -volumes. 
Let H; , i = 1 ,  2, . . .  , n be the hyperplane that contains hi and is orthogonal to H0 . 

We now define the prism rr that contains S. Its lateral faces lie in the hyperplanes 
H1 , H2 , . • .  , Hn , and its base faces lie in the hyperplanes H+ and H_ . Its mid-cross 
section, orthogonal to its axis , is the (n - 1) -simplex a0 . The length of the axis is 
2n V jm and the (n - I ) -volume of its base is (n - l )"- 1m . It follows that the n-volume 
of the prism is 2n (n - 1 )"- 1 V , as desired. We must show that S c rr . 

Suppose that q is a point of lR" that is not in rr .  Then either q is not in the region 
of lR" between H+ and H_ , or q is on the side of some Hj that does not contain a0 • 
In the former case, q f/. S, as shown above. In the latter case, let q0 be the orthogonal 
projection of q onto H0 . The (n - I) -simplex aj with base h and vertex q has (n - I) 
volume at least a s  large as  that of  the (n  - I) -simplex aj0 with base fj and vertex qo . 
But since q0 is on the side of h j which does not include a 0 ,  we have 

vol(aj0 ) > vol(ao) = m ,  

where the volumes here are (n - 1 ) -volumes . It follows that the (n - I ) -volume of aj 
exceeds m,  so q f/. S. 

It remains to prove the following lemma. 

LEMMA. Let a be the simplex whose faces are parallel to the faces of a simplex a 
and pass through the vertex of a that is opposite the parallel face. Then 

vol(a) = dd vol(a ) ,  

where d i s  the dimension of a .  

Proof Because the ratio of volumes i s  an affine invariant, we may assume that 
the d + I vertices of a are the origin and a point on each of the positive axes of a 
Cartesian coordinate system. Thus the faces of a lie in the hyperplanes xk = 0, k = 
I ,  2, . . .  , d , and "L%=1 * = I ,  where the ak are positive numbers . It is well known that 
vol(a) = � nak . The faces of a lie in the hyperplanes xk - ak = 0, k = 1 ,  2, . . .  , d , 
and"L,%=1 * = 0. Set Yk = Xk - ak , k = I ,  2, . . .  , d . Then a may be considered to be a 
simplex in the y-system with faces lying in the hyperplanes Yk = 0, k = 1 ,  2, . . .  , d, 
and "L%=1 � = I ,  where bk = -dak . It follows that 

1 d d 1 d d vol(a) = 
d !  

nk=1 1 bk l = d 
d !  

nk=1ak = d vol(a ) .  

Bounded Solution to a Differential Equation June 2000 
1577. Proposed by Philip Korman, University of Cincinnati, Cincinnati, OH. 

Consider the differential equation x"(t)  + a (t)x\t) = O on O  ::=: t < oo, where a (t) 
is continuously differentiable and a (t) � K > 0. 

(a) If a' (t) has only finitely many changes of sign, prove that any solution x (t) is 
bounded. 

(b) If one does not assume that a' (t) has only finitely many sign changes, is x (t) 
necessarily bounded? 
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Solution by the proposer. 

(a) Define the "energy" function E by 

E(t) = ! (x' (t) )2 + a (t) 
(x (t ) )4

. 
2 4 

Using the differential equation we find 

E' (t) - a' (t) 
(x (t))4 

-
4 

. 
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( 1 )  

(2) 

If a' (t) :::: 0 on an interval [t1 , t2] ,  then E' (t) :::: 0 on this interval. It follows that 
E(t) :::: E (tJ )  for t1 :::: t :::: t2 . If a' (t) :::: 0 on [t1 , t2 ] , then from ( 1 )  and (2) we 
conclude that E'(t) :::: a' (t) !g; on this interval. Integrating this expression we find 
that 

E(t) :::: 
E (tJ )  

a (t) :::: 
a (tz) E (t1 ) ,  

a (t1 ) a (tJ ) 
(3) 

In particular, E(t) can increase by at most a factor of a (t2) ja (t1 ) on [t1 , t2 ] .  
From ( 1 )  and (3) we also conclude that 

(x (t))4 E (tJ )  
-- < --

4 - a (t1 ) ' (4) 

Now assume that a' (t) changes sign at points e1 , e2 , • • •  , e11 • Because E(t) is non
negative and non-increasing on any interval on which a' (t) :::: 0, and increases 
by at most a factor a (ek+ J ) /a (ek ) on any bounded interval [eb ec+d on which 
a' (t) ::=: 0, it follows that E(t) remains bounded on [0, en ] .  If a' (t) :::: 0 on [en , oo) , 
then by (2), E(t) is non-increasing on this interval, so remains bounded. This 
implies that x (t) is bounded on [0 , oo) . If a' (t) ::=: 0 on (en , oo) , then by (4), 
x4(t) :::: 4E (en )fa (en )  for t ::=: en , again showing that x (t) is bounded. 

(b) The answer is no. One can construct a (t) which will "pump up" the energy func
tion E(t ) ,  and consequently x (t) will become unbounded. We outline the con
struction. We construct a (t) depending on the behavior of the solution x (t ) .  Start 
with the initial conditions x (O) = 1 and x' (O) = 1 ,  and set a (t) = t .  By (2), the 
energy is increasing. Slightly before the time t = 2 we smoothly change a (t) to a 
constant function a (t) = 2, and keep it constant for a while. This keeps the energy 
unchanged. It is well known that for constant a (t) solutions of our equation move 
on closed curves around the origin in (x , x') -plane. Hence at some time t1 > 2 we 
will have x (t1 ) small . Near t1 we quickly but smoothly decrease a (t) to a (t) = 1 .  
This will result in a loss of energy which, by (2), is very small. We now keep 
a (t) = 1 ,  until a time t2 > t1 . at which x (t) is as large possible for this energy 
level. This happens when x' (t2) = 0. At this time we quickly and smoothly in
crease a (t) to a (t) = 2. This will increase the energy considerably. We continue 
this process, which increases the energy without bound. Since a (t) :::: 2, this im
plies that x (t) becomes unbounded, in particular, at times t when x' (t) = 0. 
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Answers 
Solutions to the Quickies from page 240. 
A911.  Let Q' be the reflection across the plane of Q ,  so Q R = Q' R . By the triangle 
inequality, I P R - Q' R I _:s P Q' .  The maximal value P Q' is achieved when R is the 
intersection of line P Q' with the plane. In the event that P Q' is parallel to the plane, 
the value P Q' is approached as R approaches the point at infinity in the plane that is 
in the direction of line P Q' .  
A912. Let C denote the circle through A,  B ,  and C .  As B moves along C,  LABC i s  
unchanged. Because the gradient of a function at  a point is normal to the level curve 
through that point, it follows that the direction of most rapid increase of L A B C  is 
achieved when B moves towards the center of C.  

In the February 200 1 issue, the following readers were inadvertently omitted 
from the lists of those who had submitted correct solutions :  

Problem 1589 :  Jean Bogaert (Belgium), Daniele Donini (Italy), Victor 
Kutsenok, Rick Mabry, Jose H. Nieto (Venezuela), Sang-il Oum (South Korea), 
Guo Zi Long (China), Jayavel Sounderpandian, Michael Vowe (Switzerland), 
David Zhu, and Paul J. Zwier 

Problem 1590: Jean Bogaert (Belgium), John Christopher, Knut Dale (Nor
way), Daniele Donini (Italy), Victor Kutsenok, Akalu Tejera and Omer Yayenie, 
Michael Vowe (Switzerland), Westmont College Problem Solving Group, and 
David Zhu 

Problem 159 1 :  Brian D. Beasley, Joel D. Haywood, and David Zhu 

Problem 1592: Jean Bogaert (Belgium), Daniele Donini (Italy), Victor 
Kutsenok, and Michael Vowe (Switzerland) 

Problem 1593 : Knut Dale (Norway) 

The editors apologize for the omission. 

50 Years Ago i n  the MAGAZ I N E  

Volume 24, No. 1 (January-February, 1 95 1 ) included one in a continuing se
ries of articles on "What Mathematics Means to Me." Here is an excerpt from 
E. T. Bell 's offering, which included an elaborate apology for writing in the first 
person: 

Another thing I got from mathematics has meant more to me than I can say. 
No man [sic] who has not a decently skeptical mind can claim to be civi
lized. Euclid taught me that without assumptions there is no proof. There
fore, in any argument, examine the assumptions. Then, in the alleged proof, 
be alert for inexplicit assumptions .  Euclid's  notorious oversights drove this 
lesson home. Thanks to him, I am (I hope ! )  immune to all propaganda, 
including that of mathematics itself . . . .  
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section to call attention to interesting mathematical exposition that occurs outside the main
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Robinson, Sara, Why mathematicians now care about their hat color, New York Times ( 1 0  
April 200 1 )  D5  (Nat'l  Ed.) ,  F5 (City Ed.) ,  http : I lwww . nyt imes . comi200 1 I041 10isc iencel 

10MATH . html . Ebert, Todd, The Colored Hats Puzzle, http : llwww . ics . uc i . edu; - ebert l 

teachinglspring200 1/ics 1 5 1 lpuzzles . html and Solution to Colored Hats Puzzle, http : 

I lwww . i c s . uci . edu;- ebert l coloredHat sSolut ion . html . Rudich, Steven, Rudich, Steven, 
et al . The expressive power of voting polynomials (with J. Aspnes, R. Biegel, and M. Furst) , 
www . cs . cum . edul -rudichlpaperslvot ing . ps . 

Todd Ebert (Univ. of California-Irvine) has introduced three new twists on an old logic puzzle, 
connecting it to unsolved problems in coding theory. The traditional puzzle variously involves 
smudged foreheads, hats of two different colors, or unfaithful husbands; its roots go back 150 
years or so (see 9 .C and 9 .D of Sources in Recreational Mathematics: An Annotated Bibliogra

phy, 6th prelim. ed. ,  by David Singmaster, david . s ingmaster<!lsbu . ac . uk) . The participants 
reason (perfectly) and sequentially determine their own situations from learning that others have 
figured out their own. Ebert' s  new ingredients are that the hat colors are determined by coin 
tosses, that the participants work as a team (including strategizing together in advance), and 
that without further communication all must simultaneously either guess their own situations 
or abstain. The team wins if at least one member guesses correctly and no member guesses 
incorrectly. The problem is to find a strategy that maximizes the team's chances of winning. 
Surprise ! Mathematics turns out to be applicable, in the form of Hamming (and other) error
correcting codes. The players should order themselves in advance, so their hat colors become 
a binary sequence; their strategy is to hope that the sequence is not a codeword in the smallest 
Hamming code in which it embeds. In such codes, error words predominate over codewords 
and an error word can be made into a codeword in only one way, by changing a unique bit. 
Each player applies the relevant parity-check matrix to the two words that could represent the 
situation (one with a 1 for that player and the other with a 0); if the result of one is a codeword, 
the player guesses the other. If the true situation is an error word, only one player will guess, and 
will guess correctly; in the less likely event that it is a codeword, all will guess wrong. Rudich 
advises in a posting to the Usenet newsgroup s c i  . math that in 1987 he gave (in an unpublished 
paper) an optimal solution to the hat puzzle (couched as a voting puzzle) in terms of perfect 
codes. Meanwhile, other investigators are trying to devise codes that allow a large number of 
players to win even more frequently. 

Houston, Ken (ed.) , Creators of Mathematics: The Irish Connection, University College Dublin 
Press/Dufour Editions (Chester Springs, PA 1 9425-0007) ,  200 1 ;  x + 150 pp, $ 19 .95 (P) . ISBN 
1-90062 1-49-5 . 

How many Irish mathematicians can you name? Hamilton, for sure. But don' t  forget Boole, 
Stokes, Thomas Harriot, William Thomson (Lord Kelvin), Edgeworth, Reynolds, Whittaker, 
and Gosset. The short sketches in this book commissioned by the Irish Royal Academy set out 
biographical elements of their lives and others ' .  

2 4 7  
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Suri, Manil, Adventures of a mathematician on a book tour, Chronicle of Higher Education (23 
March 2001 )  B7-B 10.  Suri, Manil, The Death of Vishnu, Norton, 200 1 .  

What do you do in your spare time? If you have ever wondered what life would b e  like if 
you had secreted yourself away for years-not to prove Fermat's  Last Theorem, like Andrew 
Wiles, but to write a novel, and it became a big hit in 13  languages-this article (and perhaps 
mathematician Suri 's  novel about life in a Bombay apartment house) are for you. 

Kirtland, Joseph, Identification Numbers and Check Digit Schemes, Mathematical Association 
of America, 200 1 ;  xi + 174 pp, $32.95 (P) . ISBN 0-88385-720--0. 

"This text is ideal for a liberal arts mathematics course." So states the author, who is right 
to commend the book to that use, since it will help students to see mathematics at work in 
the world around them. The book introduces modulo arithmetic and applies it to check-digit 
schemes for airline tickets, money orders, UPCs, and ISBNs; the concepts are then applied 
to the RSA cryptography system. To set the stage for hashing and more advanced schemes, a 
chapter is devoted to sets, functions, and permutations. Two others treat symmetries and group 
theory, to prepare for the Verhoeff scheme, which employs a dihedral group of permutations. 

Stein, Sherman, How the Other Half Thinks: Adventures in Mathematical Reasoning, McGraw
Hill, 200 1 ;  xi + 1 65 pp, $ 1 8 .95 .  ISBN 0--07-1 37339-X. 

"The other half," refers to us( ! ) ,  the mathematicians and scientists. Stein, whose classic Mathe

matics: The Man-Made Universe remains one of the best books to introduce liberal arts students 
to mathematics, here again tries to bridge the gap between the "Two Cultures" (humanities vs. 
sciences). "The alleged gap can be narrowed or completely overcome by anyone . . .  the non
mathematical reader can go far in understanding mathematical reasoning." What is novel and 
surprising is that each of the eight chapters begins with a simple question about strings made up 
of two letters. The strings may be produced by chance (throws of a needle, games played until 
a team wins by two points, streaks and slumps, counting ballots) ,  by labeling of dots, by trying 
not to repeat a triplet, by avoiding adjacent repetitions, or by just going on forever. Except for 
the last topic (which serves to introduce infinite sets and questions about them), the topics all 
have applications, although only some are elaborated. (The author's  philosophy: " [W]hile my 
primary goal is to illustrate the mathematical way of thinking, if a particular result has appli
cations, so much the better.") This is a delightful book that serves very well its intention to 
illustrate that "Mathematics can tempt all those who possess the spirit of adventure." 

Chown, Marcus, The Omega man, New Scientist ( 1 0  March 2001 )  28-3 1 ;  http : //www . 

newsc ient ist . com/features/features . j sp?id=ns228 1 1  . Chaitin, G.J . ,  Exploring Ran

domness, Springer-Verlag, 200 1 ;  176 p, $34.95 . ISBN 1-852334 17-7 . 

Gregory Chaitin (IBM T.J .  Watson Research Center) "has found that the core of mathematics 
is riddled with holes . . . .  [T]here are an infinite number of mathematical facts but, for the most 
part, they are unrelated to each other and impossible to tie together with unifying theorems. 
If mathematicians find any connections, between these facts, they do so by luck." Moreover, 
according to Chaitin, "Most of mathematics is true for no particular reason. Maths is true by 
accident." Author Chown's immediate follow-up is that "this is partuclarly bad news for physi
cists," thereby embracing physicists among his readers but leaving mathematicians unaided in 
trying to get up off the floor. Chaitin 's theory rests on the number Omega, the probability that 
a randomly selected program on a Turing machine will halt. Omega is uncomputable-even 
its first bit. Moreover, each bit of Omega also tells whether a particular member of a family of 
diophantine equations has finitely or infinitely many solutions; hence, the answer for each equa
tion is unknowable and independent of the answer for the others. Says Chaitin, "Randomness is 
the true foundation of mathematics." Chown stikes a parting blow to mathematicians with "The 
discovery of Omega has exposed gaping holes in mathematics, making research in the field 
look like playing a lottery." Though generalizations of Omega have links to questions about 
real computers, computer scientists may be better at dissociating themselves from their objects 
of study (they don't feel responsible or offended if a machine fails to produce any output). 
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1 .  Two circles w1 and w2 intersect at M and N. Line .e is tangent to the circles at A 
and B ,  respectively, so that M lies closer to .e than N.  Line CD,  with C on w1 and 
D on w2, is parallel to .e and passes through M. Let lines AC and BD meet at E ;  
let lines AN and CD meet at P ;  and let lines BN and CD meet at Q .  Prove that 
EP  = E Q .  

2 .  Let a ,  b ,  c be positive real numbers such that abc = 1 .  Prove that 

1 1 1 
(a - 1 + - ) (b - 1 + - ) (c - 1 + - ) ::S 1 .  

b c a 

3 .  Let n � 2 be a positive integer. Initially, there are n fleas on a horizontal line, not 
all at the same point. For a positive real number A., define a move as follows :  

choose any two fleas, at points A and B ,  with A to the left of  B ;  let the flea at 
A jump to the point C on the line to the right of B with BC  I AB = A. .  

Determine all values of  A. such that, for any point M on  the line and any initial 
positions of the n fleas, there is a finite sequence of moves that will take all the 
fleas to positions to the right of M. 

4. A magician has one hundred cards numbered 1 to 100. He puts them into three 
boxes, a red one, a white one and a blue one, so that each box contains at least one 
card. A member of the audience selects two of the three boxes, chooses one card 
from each and announces the sum of the numbers on the chosen cards . Given this 
sum, the magician identifies the box from which no card has been chosen. How 
many ways are there to put all the cards into the boxes so that this trick always 
works? (Two ways are considered different if at least one card is put into a different 
box.) 

5 .  Determine if there exists a positive integer n such that n has exactly 2000 prime 
divisors and 2n + 1 is divisible by n. 

6. Let AHt .  BH2, and CH3 be the altitudes of an acute triangle ABC .  The incircle w 
of triangle ABC touches the sides BC,  CA, and AB  at Tt . T2 , and T3 , respectively. 
Consider the symmetric images of the lines H1 H2, H2H3 , and H3H1 with respect 
to the lines T1 T2 , T2T3 , and T3T1 • Prove that these images form a triangle whose 
vertices lie on w. 

2 4 9  
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Solutions 

1 .  Let lines A B  and M N meet at K .  By the Power of a point theorem, A K2 = 
KN · KM = B K2 • Since A B  II P Q, PM = QM. Hence it suffices to prove that 
EM ..l P Q . 

Since CD II A B ,  L EA B  = L E C M. Since A B  is tangent to the circle at A,  
LBAM = AfVI12 = L A CM. Therefore LEAB = L B A M. Similarly L E B A = 
LABM and A B  bisects both LEAM and L EB M. Hence A E B M  is a kite and 
EM ..l A B . Since P Q  II A B ,  we obtain EM ..l P Q, as desired. 

2. Since abc = 1 ,  this non-homogeneous inequality can be transformed into a ho
mogeneous one by a suitable change of variables . In fact, there exist positive real 
numbers p ,  q ,  r such that a = pI q ,  b = q I r, c = rIp.  Rewriting the inequality in 
terms of p ,  q ,  r ,  we obtain 

(p - q + r ) (q - r + p) (r - p + q) ::S pqr, ( 1 )  

where p ,  q ,  r > 0. 
At most one of the numbers u = p - q + r, v = q - r + p ,  w = r - p + q 

is negative, because any two of them have a positive sum. If exactly one of the 
numbers u ,  v ,  w is negative, then u v w  ::s 0 < pqr.  If they are all nonnegative, 
then by the AM-GM inequality, ,.jUV ::S (u + v)l2 = p. Likewise, ,.jVW ::S q and 
.JWU ::S r .  Hence u v w ::S pq r ,  as desired. 

3. The answer is A. �  1 1 (n - 1 ) .  
(a) /fA. � 1 1 (n - 1 ) ,  then the fleas can all move to the right of M .  

Assume without loss of generality that the fleas are all at distinct points ; 
otherwise we can attain such an arrangement by repeatedly jumping the 
leftmost flea at any given time over the rightmost flea at that time. Let k 
be the original minimum distance between any two adjacent fleas and let 
D be the original distance from the leftmost position to M, the point we 
wish to pass . 

Originally, the leftmost flea L is at least k(n - 1 )  distance away from 
the rightmost flea R; have L jump over R. Then L will land at least k(n -
1 )  · A. � k to the right of R. Thus we have moved the left side of our flea 
circus at least k distance to the right, while keeping the minimum distance 
between any two adjacent fleas at least k. Then after at most r �l moves 
of this sort, all the fleas will be to the right of M, as desired. 

(b) If A. < 1 I (n - 1 ) ,  then the fleas cannot always all move to the right of M. 
As the fleas jump, let 0 = (F1 , F2 , . . .  , Fn ) , where the fleas (from left 

to right) are at points F1 , F2 , . . . , Fn . Then let 

We claim that if any flea F jumps a distance d from its position, then P 
decreases by at least yd,  where 

y =  
1 - (n - 1 )A.  

1 + A. 

(Notice that y is positive since A. < 1 1 (n - 1 ) ,  and that y < 1 since 1 -
(n - 1 )A.  < 1 < 1 + A. . )  

If F lands on  or to the left of  Fn ,  then clearly P decreases by  exactly 
d > yd.  
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On the other hand, suppose F lands to the right of F, . Let A be its 
starting position, B the point it jumps over, and C its landing position, 
so that A ,  B, F, , C are in that order from left to right. Since the distance 
between each flea (besides F) and the rightmost flea increases by F;, C for 
an total increase of (n - 1 )F, C ;  as for F, its distance decreases by AF, 
since it becomes the rightmost flea. Therefore P changes by 

(n - 1 )F11 C - AFn ::S (n - l )BC  - AB 

::S A (n - 1 )AB - AB = AB [ (n - 1 )A - 1 ]  

AC  ( (n - l )A - 1 ) = 
1 + A  

[ (n - 1 )A - 1 ]  = d 
1 + A = -yd.  

Thus indeed P decreases by at  least yd in  this case as  well . 
Now suppose we have a configuration 00 of fleas where the leftmost 

flea L0 is at point F1 • Set Po = P ( 00) ,  and choose M to the right of F1 
such that F1 M > Po/ y .  Each time L0 jumps a distance d he decreases P 
by at least yd,  so if it moves a total distance of D he decreases P by at 
least y D . Because P must always be nonnegative (since it is the sum of 
nonnegative distances) ,  flea L0 can decrease P by at most P0 . Thus 

Po Po � y D and D ::S - < F1 M . 
y 

It follows that L0 can never jump to the right of M. Therefore, when 
A < 1 / (n - 1 ) ,  it is not always possible to make all the fleas move past 
M. 

4. We first claim that 1 and 2 are in  different colors . I f  not, say 1 ,  2 ,  . . .  , i - 1 are in 
red, i is white, and j be smallest blue number. We have i � 3 and j - 1 � i .  But in 
view of i + (j - 1) = (i - 1) + j, j - 1 is white, which leads to the fact that the 
sum 2 + (j - 1 )  = 1 + j does not allow the magician to decide on the unpicked 
box. 

Now let 1 be red, 2 be white, and j be the smallest blue number. We consider 
the following cases. 

(a) j = 3. Since 1 + 4 = 2 + 3, 4 is red. Similarly, 5 is white, 6 is blue, and 
so on. 

(b) j = 100. Since 2 + 99 = 1 + 100, 99 is white. If t > 1 is red, since t + 
99 = (t - 1 )  + 100, t - 1 is blue, but 100 is the smallest blue number, a 
contradiction. So 2, 3 ,  . . .  , 99 are all white. 

(c) 3 < j < 100. Since 2 + j = 1 + (j + 1 ) ,  j + 1 is red. Since 3 + j = 
2 + (j + 1 ) ,  3 is blue, but j is the smallest blue number, a contradiction. 

Therefore there are three choices of colors for 1 ,  two choices for 2, and two choices 
for 3. Once these choices are made, the colors for the remaining numbers are deter
mined. Thus the answer to this problem is 12 .  

5 .  We start with the following lemma. 

Lemma For any integer a > 2 there exists a prime p such that p I (a3 + 1 )  
but p ,/' (a + 1 ) .  

Proof For the sake of contradiction assume the statement i s  false for some 
integer a > 2. Since a3 + 1 = (a + 1 ) (a2 - a +  1 ) ,  each prime divisor of a2 -
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a + 1 divides a + 1 .  The identity 

a2 - a +  1 = (a + 1 ) (a - 2) + 3 ( 1 )  

then shows that 3 i s  the only prime dividing a2 - a + 1 ,  that is, a2 - a + 1 is 
a power of 3. Since 3 I (a + 1 ) ,  3 I (a - 2) . Hence the right-hand side of ( 1 )  is 
divisible by 3 but not by 9 .  Being a power of 3, a2 - a +  1 = 3 and a = 2, a 
contradiction. Therefore our assumption is false and the original statement is true.• 

By the lemma, there exist distinct primes p , , p2 , p3 , . . .  , P2ooo such that p,  = 3 ,  

P2 i= 3 ,  P2 I (232 + 1 ) ,  Pi+! I (23i+ I + 1 )  and Pi+! ;I' (23; + 1 ) ,  for i = 2, . . .  , 1 999 . 
It is easy to see that n = PI000 · pz · · · P2ooo satisfies that condictions of the problem. 

6. First Solution: Let A 1 ,  B1 , C1 be the reflections of T1 , Tz , T3 across the bisectors 
of LA , LB ,  LC ,  respectively. Then A 1 ,  B1 , C1 lie on w. We prove that they are the 
vertices of the triangle formed by the images in question, which settles the claim. 

By symmetry, it suffices to show that the reflection .e, of the line HzH3 across 
the line TzT3 passes through B1 • Let I be the center of w .  Note that Tz and Hz are 
always on the same side of the line B I ,  with Tz closer to the line B I than that of 
H2 • In the sequel, we consider only the case when C is on the same side of the line 
BI ,  as in the figure, i .e . ,  LC  :=: LA (minor modifications are needed if C is on the 
other side) . 

Let LA = 2a, LB  = 2{3, LC  = 2y . Then a +  f3 + y = 90° . 

Lemma The mirror image of Hz with respect the line TzT3 lies on the line 
B I .  

Proof Let .e be the line passing through H2 and perpendicular to the line 
TzT3 . Denote by S and T the points of intersections of the line BI with TzT3 and .e .  
Note that S also lies on  BT .  I t  i s  sufficient to prove that L T  SHz = 2LT  STz .  

We have L T  STz = L B ST3 = LAT3 S - L T3 BS  = (90° - a) - f3 = y .  By sym
metry across the line BI ,  LBST1 = L B ST3 = y .  Note that L B T1 S  = 1 80° 
L B ST1 - L T1 B S = 90° + a > 90° . Therefore C and S are on the same side of of 
the line I T1 •  Then, in the view of the equalities Ll ST1 = LBST1 = y = LICT" the 
quadrilateral SI T1 C is cyclic, so L l  SC = L IT1 C = 90° . But then BCHzS  is also 
cyclic by L B SC = L I SC = 90° = L B HzC . It follows that L T SHz = LBCHz = 
2y = 2LT  STz ,  as desired. • 

Note that the proof of the lemma also gives L B T Tz = LSH2T2 = {3 ,  by symme
try across the line Tz T3 and because BC HzS is cyclic. Then, since B1 is the reflec
tion of Tz across the line BI ,  L B T  B1 = L B T Tz = {3 = LCBT and T B1 I I  BC. To 
prove that B1 lies on .e , ,  it now suffices to show that .e ,  I I  BC.  

Suppose that f3 i= y (otherwise i t  i s  trivial that .e 1 I I  B C) ;  let the line C B meet 
the lines HzH3 and TzT3 at D and E, respectively. Note that D and E lie on the line 
BC on the same side of BC .  We have LBDH3 = 2 1 {3 - y l and LBET3 = 1{3 - y l . 
Therefore .e ,  II BC .  The proof is complete. 

Second Solution: (by Kiran Kedlaya) Let H and I be the orthocenter and incenter, 
respectively, of triangle ABC .  Since L B H2C = LCH3 B = 90° , B H3HzC is cyclic, 
so LAHzH3 = LABC .  Therefore triangles A H2H3 and ABC are oppositely similar. 
In particular, reflecting the line HzH3 across the line TzT3 , which is perpendicular 
to the angle bisector AI  of A ,  gives a line parallel to BC .  

Therefore the triangle formed by the reflections has sides parallel to the sides of 
ABC .  By looking at the desired result, we realize that it suffices to show that these 
reflections form the triangle obtained from ABC by the homothety with negative 
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ratio taking the circumcircle of ABC to its incircle. (We take the ratio to be negative 
because that gives the correct assertion in case ABC is equilateral . )  In particular, it 
suffices to show that the reflection of the line H2H3 across the line T2 T3 intersects 
w obtaining a chord C1 B1 parallel to the line BC,  between A and the incenter I ,  
which intercepts an arc of  measure 2LA .  

The coefficient of  similitude between AH2H3 and ABC i s  AH3/ AC = cos A .  
That means we  can obtain AH2H3 from ABC by  dilating towards A with ratio 
cos A, then reflecting across AI .  In particular, the line H2H3 is tangent to the circle 
w1 , the incircle of triangle AH2 H3 , obtained from the incircle of triangle ABC by 
dilating towards A with ratio of cos A .  Let P be the center of w1 , Q the intersection 
of the line AI with the line T2T3 , and R the reflection of P across the line T2 T3 . 
Then 

AP  = AI cos A ,  

A Q  = AT3 cos A/2 = AI cos2 A/2, 

AR  = 2A Q - AI = AI (2 cos2 A/2 - cos A) = AI .  

Let T denote the reflection across the line T2T3 • Under T, the respective images 
of the line H2H3 , w1 (radius r cos A) ,  and its center P are the line C1 B1 , circle 
w2 (radius r cos A) ,  and its center I .  Since the line H2H3 is tangent to w1 , the line 
C1 B1 is tangent to w2 , i .e . ,  the distance from chord C1 B1 to I is r cos A. Therefore 
C1 B1 = 2r sin A, and so intercepts an arc of measure 2LA by the Extended Law 
of Sines . Moreover, the line H2H3 and A lie on opposite sides of P ,  so BC  and 
B 1 C 1 lie on opposite sides of 0 .  

Thus as noted above, the reflection of the line H2H3 contains the image of BC  
under the homothety of negative ratio taking the circumcircle of ABC to its i n  circle, 
which suffices to prove the desired result. 

2 000 Olym piad Results 

The top twelve students on the 2000 USAMO were (in alphabetical order) : 

David G. Arthur 
Reid W. Barton 
Gabriel D. Carroll 
Kamaldeep S. Gandhi 
Ian Le 
George Lee, Jr. 
Ricky I. Liu 
Po-Ru Loh 
Po-Shen Loh 
Oaz Nir 
Paul A. Valiant 
Yian Zhang 

Toronto, ON 
Arlington, MA 
Oakland, CA 
New York, NY 
Princeton Junction, NJ 
San Mateo, CA 
Newton, MA 
Madison, WI 
Madison, WI 
Saratoga, CA 
Belmont, MA 
Madison, WI 

Reid Barton and Ricky Liu were the winners of the Samuel Greitzer-Murray Klamkin 
award, given to the top scorer(s) on the USAMO. The Clay Mathematics Institute 
(CMI) award, to be presented for a solution of outstanding elegance, and carrying a 
$ 1 000 cash prize, was presented to Ricky Liu for his solution to USAMO Problem 3 .  

The USA team members were chosen based on  their combined performance on  the 
29th annual USAMO and the Team Selection Test that took place at this year's MOSP 
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held at the University of Nebraska-Lincoln, June 6-July 4 ,  2000. Members of the USA 
team at the 2000 IMO (Taejon, Republic of Korea) were Reid Barton, George Lee, 
Ricky Liu, Po-Ru Loh, Oaz Nir, and Paul Valiant. Titu Andreescu (Director of the 
American Mathematics Competitions) and Zurning Feng (Phillips Exeter Academy) 
served as team leader and deputy leader, respectively. The team was also accompanied 
by Dick Gibbs (Chair, Committee on the American Mathematics Competitions, Fort 
Lewis College), as the official observer of the team leader. 

At the 2000 IMO, gold medals were awarded to students scoring between 30 and 
42 points (there were 4 perfect papers on this very difficult exam), silver medals to 
students scoring between 20 and 29 points, and bronze medals to students scoring 
between 1 1  and 19  points . Barton' s  39 tied for 5th. The team's individual performances 
were as follows :  

Barton Homeschooled GOLD Medalist 
Lee Aragon HS GOLD Medalist 
Liu Newton South HS SILVER Medalist 
P. -R. Loh James Madison Memorial HS SILVER Medalist 
Nir Monta Vista HS GOLD Medalist 
Valiant Milton Academy SILVER Medalist 

In terms of total score (out of a maximum of 252), the highest ranking of the 82 par
ticipating teams were as follows : 

China 2 1 8  Belarus 1 65 
Russia 2 1 5  Taiwan 1 64 
USA 1 84 Hungary 156  
Korea 172 Iran 155 
Bulgaria 1 69 Israel 1 39  
Vietnam 169 Romania 139  

The 2001 IMO is  scheduled to  be held in  Washington, DC and Fairfax, VA, USA. For 
more information about the 200 1 IMO, contact Walter Mientka at wal t er@amc . unl . edu 
or Kiran Kedlaya at kedlaya©math . berkeley . edu. 
The 2000 USAMO was prepared by Titu Andreescu (Chair), Zurning Feng, Kiran Ked
laya, Alexander Soifer, Richard Stong and Zvezdelina Stankova-Frenkel. The Team 
Selection Test was prepared by Titu Andreescu and Kiran Kedlaya. The MOSP was 
held at the University of Nebraska, Lincoln . Titu Andreescu (Director), Zurning Feng, 
Razvan Gelca, Kiran Kedlaya, and Zvezdelina Stankova-Frenkel served as instructors, 
assisted by Melanie Wood and Daniel Stronger. 
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Mathematical Puzzle Tales 
Martin Ga rdner 

Series: Spectrum 

Martin offers everybody (not just mathematicians) creative refuge for 
the imagination. The puzzles in this book are not just puzzles. Very 
often, they embody deep mathematical principals that deal with mat
ters not yet well enough understood to be applied to the practical 
world. Such "games" are not more trivial than "real" mathematics. 
They may well be more important and may be the foreshadowing of 
future mathematics. 
-Isaac Asimov from the Preface 

Martin Gardner published his first book in 1 935 . Since then he has published more than 60 books, most 
of them about mathematics and sciences, but also philosophy and literature. He has charmed readers of 
all ages with his mathematical insights and sense of fun. 

The MAA is proud to reissue this collection of thirty-six stories taken from Isaac Asimov's Science Fiction 
Magazine. Brilliant, amusing, these brainteasers will help you sharpen your wits and prepare for takeoff 

into uncharted universes of the future. The challenging problems presented here are based on geometry, 
logarithms, topology, probability, weird number sequences, logic and virtually every other aspect of mathe 
matics as well as wordplay. 

Included are: Lost on Capra • Space Pool • Machismo on Byronia • The Third Dr. Moreau • The Voyage of 
the Bagel • The Great Ring of Neptune • The Postage Stamps of Philo Tate • Captain Tittebaum's Tests • 
The Three Robots of Professor Tinker • How Bagson Bagged a Board Game • The Explosion of Blabbage's 
Oracle · No Vacancy at the Aleph-Null Inn . . .  and more. 

Catalog Code: MPT/JR 1 68 pp., Paperbound, 200 1 ISBN 088385-533-x List: $22.50 MAA Member: $ 1 8.00 

arne ______________________________ __ 
Add rc. '---------------------- Signat u re ______________________ _ 
Cit y Qty __ _ 
Statt' __________ _ Zip ---------------
Phnnc de: M PT/J R  

xp. Date_l_ 



� ·rhc Ma t h c tn a t i c a l  A ssoc i ation o f  A tnc rica 

Symmetry 
Hans Walser 

Translated from German by Peter Hi lton with the 
assistance of Jean Pedersen 

Series:  Spectrum 
We meet symmetry everywhere: in the cycle of the seasons, in the two
sided symmetry of the human face, but just as much in the 4-stroke 
motor, in the decimal expansion of the fraction 1 /7, or in carpet pat
terns, ornaments, poems and songs. Science, art and modern production 
methods are based, in a far- reaching way, on symmetric forms and 
structures. In this book numerous examples of symmetry are presented 
in accessible form. Hans Walser, also the author of The Golden Section, 
contributes here to "sharpening the eye" of the reader for recognizing 
symmetry all around us and for appreciating its essential role as a 
methodological tool. This English edition has been prepared, with the 

author's cooperation, to make it available to English-speaking students of mathematics. The treatment is 
informal and the text is enriched by the presence of very illuminating diagrams. Questions are posed at 
fairly frequent intervals and the answers to these questions appear at the end of each chapter. 

Contents: 1 .  Little mirror, little mirror: Even further inwards; The mirror in a mirror in a mirror; An 
avenue of poplars; The monitor in the monitor; As seen from the side. 2. Inside and outside: Reflecting 
in a circle; Composition of two-circle-reflections; Direct construction of the image point; Circle-reflection 
invariants; Image of a straight line; Representation in Cartesian coordinates; Image of a circle; Square
reflection; Other reflection. 3. Symmetric procedure: Center of gravity in the triangle; Center of gravity in 
the quadrilateral. 4.  Parquet floors, lattices, and Pythagoras: Parquet floors; Parquets and Pythagoras; 
Construction of a proof-diagram; Other cathetus-figures; Overlapping of lattice-points; Pythagorean trian
gles; Parametrizing the primitive triangles; In a regular triangular lattice. The problem of the center: 
Where is the center of the world?; Mean values; Half is eaten; Average speed; Correcting systematic errors; 
Minimal service- routes; Symmetry in word, script and number: Palindromes; Palindromic numbers; 
Rhyming schemes. 
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